
Udp	socket	programming	in	c	pdf

http://foaptoa.com/wb3?utm_term=udp%20socket%20programming%20in%20c%20pdf

1	Intro	2	What	is	a	socket?	2.1	Two	Types	of	Internet	Sockets	2.2	Low	level	Nonsense	and	Network	Theory	3	IP	Addresses,	structs,	and	Data	Munging	4	Jumping	from	IPv4	to	IPv6	5	System	Calls	or	Bust	6	Client-Server	Background	6.1	A	Simple	Stream	Server	6.2	A	Simple	Stream	Client	6.3	Datagram	Sockets	7	Slightly	Advanced	Techniques	8
Common	Questions	9	Man	Pages	9.1	accept()	9.2	bind()	9.3	connect()	9.4	close()	9.5	getaddrinfo(),	freeaddrinfo(),	gai_strerror()	9.6	gethostname()	9.7	gethostbyname(),	gethostbyaddr()	9.8	getnameinfo()	9.9	getpeername()	9.10	errno	9.11	fcntl()	9.12	htons(),	htonl(),	ntohs(),	ntohl()	9.13	inet_ntoa(),	inet_aton(),	inet_addr	9.14	inet_ntop(),	inet_pton()
9.15	listen()	9.16	perror(),	strerror()	9.17	poll()	9.18	recv(),	recvfrom()	9.19	select()	9.20	setsockopt(),	getsockopt()	9.21	send(),	sendto()	9.22	shutdown()	9.23	socket()	9.24	struct	sockaddr	and	pals	10	More	References	10.1	Books	10.2	Web	References	10.3	RFCs	Hey!	Socket	programming	got	you	down?	Is	this	stuff	just	a	little	too	difficult	to	figure	out
from	the	man	pages?	You	want	to	do	cool	Internet	programming,	but	you	don’t	have	time	to	wade	through	a	gob	of	structs	trying	to	figure	out	if	you	have	to	call	bind()	before	you	connect(),	etc.,	etc.	Well,	guess	what!	I’ve	already	done	this	nasty	business,	and	I’m	dying	to	share	the	information	with	everyone!	You’ve	come	to	the	right	place.	This
document	should	give	the	average	competent	C	programmer	the	edge	s/he	needs	to	get	a	grip	on	this	networking	noise.	And	check	it	out:	I’ve	finally	caught	up	with	the	future	(just	in	the	nick	of	time,	too!)	and	have	updated	the	Guide	for	IPv6!	Enjoy!	Audience	This	document	has	been	written	as	a	tutorial,	not	a	complete	reference.	It	is	probably	at	its
best	when	read	by	individuals	who	are	just	starting	out	with	socket	programming	and	are	looking	for	a	foothold.	It	is	certainly	not	the	complete	and	total	guide	to	sockets	programming,	by	any	means.	Hopefully,	though,	it’ll	be	just	enough	for	those	man	pages	to	start	making	sense…	:-)	Platform	and	Compiler	The	code	contained	within	this	document
was	compiled	on	a	Linux	PC	using	Gnu’s	gcc	compiler.	It	should,	however,	build	on	just	about	any	platform	that	uses	gcc.	Naturally,	this	doesn’t	apply	if	you’re	programming	for	Windows—see	the	section	on	Windows	programming,	below.	Official	Homepage	and	Books	For	Sale	This	official	location	of	this	document	is:	There	you	will	also	find	example
code	and	translations	of	the	guide	into	various	languages.	To	buy	nicely	bound	print	copies	(some	call	them	“books”),	visit:	I’ll	appreciate	the	purchase	because	it	helps	sustain	my	document-writing	lifestyle!	Note	for	Solaris/SunOS	Programmers	When	compiling	for	Solaris	or	SunOS,	you	need	to	specify	some	extra	command-line	switches	for	linking	in
the	proper	libraries.	In	order	to	do	this,	simply	add	“-lnsl	-lsocket	-lresolv”	to	the	end	of	the	compile	command,	like	so:	$	cc	-o	server	server.c	-lnsl	-lsocket	-lresolv	If	you	still	get	errors,	you	could	try	further	adding	a	-lxnet	to	the	end	of	that	command	line.	I	don’t	know	what	that	does,	exactly,	but	some	people	seem	to	need	it.	Another	place	that	you
might	find	problems	is	in	the	call	to	setsockopt().	The	prototype	differs	from	that	on	my	Linux	box,	so	instead	of:	enter	this:	As	I	don’t	have	a	Sun	box,	I	haven’t	tested	any	of	the	above	information—it’s	just	what	people	have	told	me	through	email.	Note	for	Windows	Programmers	At	this	point	in	the	guide,	historically,	I’ve	done	a	bit	of	bagging	on
Windows,	simply	due	to	the	fact	that	I	don’t	like	it	very	much.	But	I	should	really	be	fair	and	tell	you	that	Windows	has	a	huge	install	base	and	is	obviously	a	perfectly	fine	operating	system.	They	say	absence	makes	the	heart	grow	fonder,	and	in	this	case,	I	believe	it	to	be	true.	(Or	maybe	it’s	age.)	But	what	I	can	say	is	that	after	a	decade-plus	of	not
using	Microsoft	OSes	for	my	personal	work,	I’m	much	happier!	As	such,	I	can	sit	back	and	safely	say,	“Sure,	feel	free	to	use	Windows!”	…Ok	yes,	it	does	make	me	grit	my	teeth	to	say	that.	So	I	still	encourage	you	to	try	Linux1,	BSD2,	or	some	flavor	of	Unix,	instead.	But	people	like	what	they	like,	and	you	Windows	folk	will	be	pleased	to	know	that	this
information	is	generally	applicable	to	you	guys,	with	a	few	minor	changes,	if	any.	One	cool	thing	you	can	do	is	install	Cygwin3,	which	is	a	collection	of	Unix	tools	for	Windows.	I’ve	heard	on	the	grapevine	that	doing	so	allows	all	these	programs	to	compile	unmodified.	Another	thing	that	you	should	consider	is	the	Windows	Subsystem	for	Linux4.	This
basically	allows	you	to	install	a	Linux	VM-ish	thing	on	Windows	10.	That	will	also	definitely	get	you	situated.	But	some	of	you	might	want	to	do	things	the	Pure	Windows	Way.	That’s	very	gutsy	of	you,	and	this	is	what	you	have	to	do:	run	out	and	get	Unix	immediately!	No,	no—I’m	kidding.	I’m	supposed	to	be	Windows-friendly(er)	these	days…	This	is
what	you’ll	have	to	do	(unless	you	install	Cygwin!):	first,	ignore	pretty	much	all	of	the	system	header	files	I	mention	in	here.	All	you	need	to	include	is:	Wait!	You	also	have	to	make	a	call	to	WSAStartup()	before	doing	anything	else	with	the	sockets	library.	The	code	to	do	that	looks	something	like	this:	#include	{	WSADATA	wsaData;	//	if	this	doesn't
work	//WSAData	wsaData;	//	then	try	this	instead	//	MAKEWORD(1,1)	for	Winsock	1.1,	MAKEWORD(2,0)	for	Winsock	2.0:	if	(WSAStartup(MAKEWORD(1,1),	&wsaData)	!=	0)	{	fprintf(stderr,	"WSAStartup	failed.");	exit(1);	}	You	also	have	to	tell	your	compiler	to	link	in	the	Winsock	library,	usually	called	wsock32.lib	or	winsock32.lib,	or	ws2_32.lib	for
Winsock	2.0.	Under	VC++,	this	can	be	done	through	the	Project	menu,	under	Settings....	Click	the	Link	tab,	and	look	for	the	box	titled	“Object/library	modules”.	Add	“wsock32.lib”	(or	whichever	lib	is	your	preference)	to	that	list.	Or	so	I	hear.	Finally,	you	need	to	call	WSACleanup()	when	you’re	all	through	with	the	sockets	library.	See	your	online	help
for	details.	Once	you	do	that,	the	rest	of	the	examples	in	this	tutorial	should	generally	apply,	with	a	few	exceptions.	For	one	thing,	you	can’t	use	close()	to	close	a	socket—you	need	to	use	closesocket(),	instead.	Also,	select()	only	works	with	socket	descriptors,	not	file	descriptors	(like	0	for	stdin).	There	is	also	a	socket	class	that	you	can	use,	CSocket.
Check	your	compilers	help	pages	for	more	information.	To	get	more	information	about	Winsock,	read	the	Winsock	FAQ5	and	go	from	there.	Finally,	I	hear	that	Windows	has	no	fork()	system	call	which	is,	unfortunately,	used	in	some	of	my	examples.	Maybe	you	have	to	link	in	a	POSIX	library	or	something	to	get	it	to	work,	or	you	can	use
CreateProcess()	instead.	fork()	takes	no	arguments,	and	CreateProcess()	takes	about	48	billion	arguments.	If	you’re	not	up	to	that,	the	CreateThread()	is	a	little	easier	to	digest…unfortunately	a	discussion	about	multithreading	is	beyond	the	scope	of	this	document.	I	can	only	talk	about	so	much,	you	know!	Email	Policy	I’m	generally	available	to	help
out	with	email	questions	so	feel	free	to	write	in,	but	I	can’t	guarantee	a	response.	I	lead	a	pretty	busy	life	and	there	are	times	when	I	just	can’t	answer	a	question	you	have.	When	that’s	the	case,	I	usually	just	delete	the	message.	It’s	nothing	personal;	I	just	won’t	ever	have	the	time	to	give	the	detailed	answer	you	require.	As	a	rule,	the	more	complex
the	question,	the	less	likely	I	am	to	respond.	If	you	can	narrow	down	your	question	before	mailing	it	and	be	sure	to	include	any	pertinent	information	(like	platform,	compiler,	error	messages	you’re	getting,	and	anything	else	you	think	might	help	me	troubleshoot),	you’re	much	more	likely	to	get	a	response.	For	more	pointers,	read	ESR’s	document,
How	To	Ask	Questions	The	Smart	Way6.	If	you	don’t	get	a	response,	hack	on	it	some	more,	try	to	find	the	answer,	and	if	it’s	still	elusive,	then	write	me	again	with	the	information	you’ve	found	and	hopefully	it	will	be	enough	for	me	to	help	out.	Now	that	I’ve	badgered	you	about	how	to	write	and	not	write	me,	I’d	just	like	to	let	you	know	that	I	fully
appreciate	all	the	praise	the	guide	has	received	over	the	years.	It’s	a	real	morale	boost,	and	it	gladdens	me	to	hear	that	it	is	being	used	for	good!	:-)	Thank	you!	Mirroring	You	are	more	than	welcome	to	mirror	this	site,	whether	publicly	or	privately.	If	you	publicly	mirror	the	site	and	want	me	to	link	to	it	from	the	main	page,	drop	me	a	line	at
beej@beej.us.	Note	for	Translators	If	you	want	to	translate	the	guide	into	another	language,	write	me	at	beej@beej.us	and	I’ll	link	to	your	translation	from	the	main	page.	Feel	free	to	add	your	name	and	contact	info	to	the	translation.	This	source	markdown	document	uses	UTF-8	encoding.	Please	note	the	license	restrictions	in	the	Copyright,
Distribution,	and	Legal	section,	below.	If	you	want	me	to	host	the	translation,	just	ask.	I’ll	also	link	to	it	if	you	want	to	host	it;	either	way	is	fine.	Copyright,	Distribution,	and	Legal	Beej’s	Guide	to	Network	Programming	is	Copyright	©	2019	Brian	“Beej	Jorgensen”	Hall.	With	specific	exceptions	for	source	code	and	translations,	below,	this	work	is
licensed	under	the	Creative	Commons	Attribution-	Noncommercial-	No	Derivative	Works	3.0	License.	To	view	a	copy	of	this	license,	visit	or	send	a	letter	to	Creative	Commons,	171	Second	Street,	Suite	300,	San	Francisco,	California,	94105,	USA.	One	specific	exception	to	the	“No	Derivative	Works”	portion	of	the	license	is	as	follows:	this	guide	may	be
freely	translated	into	any	language,	provided	the	translation	is	accurate,	and	the	guide	is	reprinted	in	its	entirety.	The	same	license	restrictions	apply	to	the	translation	as	to	the	original	guide.	The	translation	may	also	include	the	name	and	contact	information	for	the	translator.	The	C	source	code	presented	in	this	document	is	hereby	granted	to	the
public	domain,	and	is	completely	free	of	any	license	restriction.	Educators	are	freely	encouraged	to	recommend	or	supply	copies	of	this	guide	to	their	students.	Unless	otherwise	mutually	agreed	by	the	parties	in	writing,	the	author	offers	the	work	as-is	and	makes	no	representations	or	warranties	of	any	kind	concerning	the	work,	express,	implied,
statutory	or	otherwise,	including,	without	limitation,	warranties	of	title,	merchantibility,	fitness	for	a	particular	purpose,	noninfringement,	or	the	absence	of	latent	or	other	defects,	accuracy,	or	the	presence	of	absence	of	errors,	whether	or	not	discoverable.	Except	to	the	extent	required	by	applicable	law,	in	no	event	will	the	author	be	liable	to	you	on
any	legal	theory	for	any	special,	incidental,	consequential,	punitive	or	exemplary	damages	arising	out	of	the	use	of	the	work,	even	if	the	author	has	been	advised	of	the	possibility	of	such	damages.	Contact	beej@beej.us	for	more	information.	Dedication	Thanks	to	everyone	who	has	helped	in	the	past	and	future	with	me	getting	this	guide	written.	And
thank	you	to	all	the	people	who	produce	the	Free	software	and	packages	that	I	use	to	make	the	Guide:	GNU,	Linux,	Slackware,	vim,	Python,	Inkscape,	pandoc,	many	others.	And	finally	a	big	thank-you	to	the	literally	thousands	of	you	who	have	written	in	with	suggestions	for	improvements	and	words	of	encouragement.	I	dedicate	this	guide	to	some	of
my	biggest	heroes	and	inpirators	in	the	world	of	computers:	Donald	Knuth,	Bruce	Schneier,	W.	Richard	Stevens,	and	The	Woz,	my	Readership,	and	the	entire	Free	and	Open	Source	Software	Community.	This	book	is	written	in	Markdown	using	the	vim	editor	on	an	Arch	Linux	box	loaded	with	GNU	tools.	The	cover	“art”	and	diagrams	are	produced
with	Inkscape.	The	Markdown	is	converted	to	HTML	and	LaTex/PDF	by	Python,	Pandoc	and	XeLaTeX,	using	Liberation	fonts.	The	toolchain	is	composed	of	100%	Free	and	Open	Source	Software.	What	is	a	socket?	You	hear	talk	of	“sockets”	all	the	time,	and	perhaps	you	are	wondering	just	what	they	are	exactly.	Well,	they’re	this:	a	way	to	speak	to
other	programs	using	standard	Unix	file	descriptors.	What?	Ok—you	may	have	heard	some	Unix	hacker	state,	“Jeez,	everything	in	Unix	is	a	file!”	What	that	person	may	have	been	talking	about	is	the	fact	that	when	Unix	programs	do	any	sort	of	I/O,	they	do	it	by	reading	or	writing	to	a	file	descriptor.	A	file	descriptor	is	simply	an	integer	associated	with
an	open	file.	But	(and	here’s	the	catch),	that	file	can	be	a	network	connection,	a	FIFO,	a	pipe,	a	terminal,	a	real	on-the-disk	file,	or	just	about	anything	else.	Everything	in	Unix	is	a	file!	So	when	you	want	to	communicate	with	another	program	over	the	Internet	you’re	gonna	do	it	through	a	file	descriptor,	you’d	better	believe	it.	“Where	do	I	get	this	file
descriptor	for	network	communication,	Mr.	Smarty-Pants?”	is	probably	the	last	question	on	your	mind	right	now,	but	I’m	going	to	answer	it	anyway:	You	make	a	call	to	the	socket()	system	routine.	It	returns	the	socket	descriptor,	and	you	communicate	through	it	using	the	specialized	send()	and	recv()	(man	send,	man	recv)	socket	calls.	“But,	hey!”	you
might	be	exclaiming	right	about	now.	“If	it’s	a	file	descriptor,	why	in	the	name	of	Neptune	can’t	I	just	use	the	normal	read()	and	write()	calls	to	communicate	through	the	socket?”	The	short	answer	is,	“You	can!”	The	longer	answer	is,	“You	can,	but	send()	and	recv()	offer	much	greater	control	over	your	data	transmission.”	What	next?	How	about	this:
there	are	all	kinds	of	sockets.	There	are	DARPA	Internet	addresses	(Internet	Sockets),	path	names	on	a	local	node	(Unix	Sockets),	CCITT	X.25	addresses	(X.25	Sockets	that	you	can	safely	ignore),	and	probably	many	others	depending	on	which	Unix	flavor	you	run.	This	document	deals	only	with	the	first:	Internet	Sockets.	Two	Types	of	Internet	Sockets
What’s	this?	There	are	two	types	of	Internet	sockets?	Yes.	Well,	no.	I’m	lying.	There	are	more,	but	I	didn’t	want	to	scare	you.	I’m	only	going	to	talk	about	two	types	here.	Except	for	this	sentence,	where	I’m	going	to	tell	you	that	“Raw	Sockets”	are	also	very	powerful	and	you	should	look	them	up.	All	right,	already.	What	are	the	two	types?	One	is
“Stream	Sockets”;	the	other	is	“Datagram	Sockets”,	which	may	hereafter	be	referred	to	as	“SOCK_STREAM”	and	“SOCK_DGRAM”,	respectively.	Datagram	sockets	are	sometimes	called	“connectionless	sockets”.	(Though	they	can	be	connect()’d	if	you	really	want.	See	connect(),	below.)	Stream	sockets	are	reliable	two-way	connected	communication
streams.	If	you	output	two	items	into	the	socket	in	the	order	“1,	2”,	they	will	arrive	in	the	order	“1,	2”	at	the	opposite	end.	They	will	also	be	error-free.	I’m	so	certain,	in	fact,	they	will	be	error-free,	that	I’m	just	going	to	put	my	fingers	in	my	ears	and	chant	la	la	la	la	if	anyone	tries	to	claim	otherwise.	What	uses	stream	sockets?	Well,	you	may	have
heard	of	the	telnet	application,	yes?	It	uses	stream	sockets.	All	the	characters	you	type	need	to	arrive	in	the	same	order	you	type	them,	right?	Also,	web	browsers	use	the	Hypertext	Transfer	Protocol	(HTTP)	which	uses	stream	sockets	to	get	pages.	Indeed,	if	you	telnet	to	a	web	site	on	port	80,	and	type	“GET	/	HTTP/1.0”	and	hit	RETURN	twice,	it’ll
dump	the	HTML	back	at	you!	If	you	don’t	have	telnet	installed	and	don’t	want	to	install	it,	or	your	telnet	is	being	picky	about	connecting	to	clients,	the	guide	comes	with	a	telnet-like	program	called	telnot7.	This	should	work	well	for	all	the	needs	of	the	guide.	(Note	that	telnet	is	actually	a	spec’d	networking	protocol8,	and	telnot	doesn’t	implement	this
protocol	at	all.)	How	do	stream	sockets	achieve	this	high	level	of	data	transmission	quality?	They	use	a	protocol	called	“The	Transmission	Control	Protocol”,	otherwise	known	as	“TCP”	(see	RFC	7939	for	extremely	detailed	info	on	TCP).	TCP	makes	sure	your	data	arrives	sequentially	and	error-free.	You	may	have	heard	“TCP”	before	as	the	better	half	of
“TCP/IP”	where	“IP”	stands	for	“Internet	Protocol”	(see	RFC	79110).	IP	deals	primarily	with	Internet	routing	and	is	not	generally	responsible	for	data	integrity.	Cool.	What	about	Datagram	sockets?	Why	are	they	called	connectionless?	What	is	the	deal,	here,	anyway?	Why	are	they	unreliable?	Well,	here	are	some	facts:	if	you	send	a	datagram,	it	may
arrive.	It	may	arrive	out	of	order.	If	it	arrives,	the	data	within	the	packet	will	be	error-free.	Datagram	sockets	also	use	IP	for	routing,	but	they	don’t	use	TCP;	they	use	the	“User	Datagram	Protocol”,	or	“UDP”	(see	RFC	76811).	Why	are	they	connectionless?	Well,	basically,	it’s	because	you	don’t	have	to	maintain	an	open	connection	as	you	do	with
stream	sockets.	You	just	build	a	packet,	slap	an	IP	header	on	it	with	destination	information,	and	send	it	out.	No	connection	needed.	They	are	generally	used	either	when	a	TCP	stack	is	unavailable	or	when	a	few	dropped	packets	here	and	there	don’t	mean	the	end	of	the	Universe.	Sample	applications:	tftp	(trivial	file	transfer	protocol,	a	little	brother	to
FTP),	dhcpcd	(a	DHCP	client),	multiplayer	games,	streaming	audio,	video	conferencing,	etc.	“Wait	a	minute!	tftp	and	dhcpcd	are	used	to	transfer	binary	applications	from	one	host	to	another!	Data	can’t	be	lost	if	you	expect	the	application	to	work	when	it	arrives!	What	kind	of	dark	magic	is	this?”	Well,	my	human	friend,	tftp	and	similar	programs	have
their	own	protocol	on	top	of	UDP.	For	example,	the	tftp	protocol	says	that	for	each	packet	that	gets	sent,	the	recipient	has	to	send	back	a	packet	that	says,	“I	got	it!”	(an	“ACK”	packet).	If	the	sender	of	the	original	packet	gets	no	reply	in,	say,	five	seconds,	he’ll	re-transmit	the	packet	until	he	finally	gets	an	ACK.	This	acknowledgment	procedure	is	very
important	when	implementing	reliable	SOCK_DGRAM	applications.	For	unreliable	applications	like	games,	audio,	or	video,	you	just	ignore	the	dropped	packets,	or	perhaps	try	to	cleverly	compensate	for	them.	(Quake	players	will	know	the	manifestation	this	effect	by	the	technical	term:	accursed	lag.	The	word	“accursed”,	in	this	case,	represents	any
extremely	profane	utterance.)	Why	would	you	use	an	unreliable	underlying	protocol?	Two	reasons:	speed	and	speed.	It’s	way	faster	to	fire-and-forget	than	it	is	to	keep	track	of	what	has	arrived	safely	and	make	sure	it’s	in	order	and	all	that.	If	you’re	sending	chat	messages,	TCP	is	great;	if	you’re	sending	40	positional	updates	per	second	of	the	players
in	the	world,	maybe	it	doesn’t	matter	so	much	if	one	or	two	get	dropped,	and	UDP	is	a	good	choice.	Low	level	Nonsense	and	Network	Theory	Since	I	just	mentioned	layering	of	protocols,	it’s	time	to	talk	about	how	networks	really	work,	and	to	show	some	examples	of	how	SOCK_DGRAM	packets	are	built.	Practically,	you	can	probably	skip	this	section.
It’s	good	background,	however.	Data	Encapsulation.	Hey,	kids,	it’s	time	to	learn	about	Data	Encapsulation!	This	is	very	very	important.	It’s	so	important	that	you	might	just	learn	about	it	if	you	take	the	networks	course	here	at	Chico	State	;-).	Basically,	it	says	this:	a	packet	is	born,	the	packet	is	wrapped	(“encapsulated”)	in	a	header	(and	rarely	a
footer)	by	the	first	protocol	(say,	the	TFTP	protocol),	then	the	whole	thing	(TFTP	header	included)	is	encapsulated	again	by	the	next	protocol	(say,	UDP),	then	again	by	the	next	(IP),	then	again	by	the	final	protocol	on	the	hardware	(physical)	layer	(say,	Ethernet).	When	another	computer	receives	the	packet,	the	hardware	strips	the	Ethernet	header,
the	kernel	strips	the	IP	and	UDP	headers,	the	TFTP	program	strips	the	TFTP	header,	and	it	finally	has	the	data.	Now	I	can	finally	talk	about	the	infamous	Layered	Network	Model	(aka	“ISO/OSI”).	This	Network	Model	describes	a	system	of	network	functionality	that	has	many	advantages	over	other	models.	For	instance,	you	can	write	sockets	programs
that	are	exactly	the	same	without	caring	how	the	data	is	physically	transmitted	(serial,	thin	Ethernet,	AUI,	whatever)	because	programs	on	lower	levels	deal	with	it	for	you.	The	actual	network	hardware	and	topology	is	transparent	to	the	socket	programmer.	Without	any	further	ado,	I’ll	present	the	layers	of	the	full-blown	model.	Remember	this	for
network	class	exams:	Application	Presentation	Session	Transport	Network	Data	Link	Physical	The	Physical	Layer	is	the	hardware	(serial,	Ethernet,	etc.).	The	Application	Layer	is	just	about	as	far	from	the	physical	layer	as	you	can	imagine—it’s	the	place	where	users	interact	with	the	network.	Now,	this	model	is	so	general	you	could	probably	use	it	as
an	automobile	repair	guide	if	you	really	wanted	to.	A	layered	model	more	consistent	with	Unix	might	be:	Application	Layer	(telnet,	ftp,	etc.)	Host-to-Host	Transport	Layer	(TCP,	UDP)	Internet	Layer	(IP	and	routing)	Network	Access	Layer	(Ethernet,	wi-fi,	or	whatever)	At	this	point	in	time,	you	can	probably	see	how	these	layers	correspond	to	the
encapsulation	of	the	original	data.	See	how	much	work	there	is	in	building	a	simple	packet?	Jeez!	And	you	have	to	type	in	the	packet	headers	yourself	using	“cat”!	Just	kidding.	All	you	have	to	do	for	stream	sockets	is	send()	the	data	out.	All	you	have	to	do	for	datagram	sockets	is	encapsulate	the	packet	in	the	method	of	your	choosing	and	sendto()	it
out.	The	kernel	builds	the	Transport	Layer	and	Internet	Layer	on	for	you	and	the	hardware	does	the	Network	Access	Layer.	Ah,	modern	technology.	So	ends	our	brief	foray	into	network	theory.	Oh	yes,	I	forgot	to	tell	you	everything	I	wanted	to	say	about	routing:	nothing!	That’s	right,	I’m	not	going	to	talk	about	it	at	all.	The	router	strips	the	packet	to
the	IP	header,	consults	its	routing	table,	blah	blah	blah.	Check	out	the	IP	RFC12	if	you	really	really	care.	If	you	never	learn	about	it,	well,	you’ll	live.	IP	Addresses,	structs,	and	Data	Munging	Here’s	the	part	of	the	game	where	we	get	to	talk	code	for	a	change.	But	first,	let’s	discuss	more	non-code!	Yay!	First	I	want	to	talk	about	IP	addresses	and	ports
for	just	a	tad	so	we	have	that	sorted	out.	Then	we’ll	talk	about	how	the	sockets	API	stores	and	manipulates	IP	addresses	and	other	data.	IP	Addresses,	versions	4	and	6	In	the	good	old	days	back	when	Ben	Kenobi	was	still	called	Obi	Wan	Kenobi,	there	was	a	wonderful	network	routing	system	called	The	Internet	Protocol	Version	4,	also	called	IPv4.	It
had	addresses	made	up	of	four	bytes	(A.K.A.	four	“octets”),	and	was	commonly	written	in	“dots	and	numbers”	form,	like	so:	192.0.2.111.	You’ve	probably	seen	it	around.	In	fact,	as	of	this	writing,	virtually	every	site	on	the	Internet	uses	IPv4.	Everyone,	including	Obi	Wan,	was	happy.	Things	were	great,	until	some	naysayer	by	the	name	of	Vint	Cerf
warned	everyone	that	we	were	about	to	run	out	of	IPv4	addresses!	(Besides	warning	everyone	of	the	Coming	IPv4	Apocalypse	Of	Doom	And	Gloom,	Vint	Cerf13	is	also	well-known	for	being	The	Father	Of	The	Internet.	So	I	really	am	in	no	position	to	second-guess	his	judgment.)	Run	out	of	addresses?	How	could	this	be?	I	mean,	there	are	like	billions	of
IP	addresses	in	a	32-bit	IPv4	address.	Do	we	really	have	billions	of	computers	out	there?	Yes.	Also,	in	the	beginning,	when	there	were	only	a	few	computers	and	everyone	thought	a	billion	was	an	impossibly	large	number,	some	big	organizations	were	generously	allocated	millions	of	IP	addresses	for	their	own	use.	(Such	as	Xerox,	MIT,	Ford,	HP,	IBM,
GE,	AT&T,	and	some	little	company	called	Apple,	to	name	a	few.)	In	fact,	if	it	weren’t	for	several	stopgap	measures,	we	would	have	run	out	a	long	time	ago.	But	now	we’re	living	in	an	era	where	we’re	talking	about	every	human	having	an	IP	address,	every	computer,	every	calculator,	every	phone,	every	parking	meter,	and	(why	not)	every	puppy	dog,
as	well.	And	so,	IPv6	was	born.	Since	Vint	Cerf	is	probably	immortal	(even	if	his	physical	form	should	pass	on,	heaven	forbid,	he	is	probably	already	existing	as	some	kind	of	hyper-intelligent	ELIZA14	program	out	in	the	depths	of	the	Internet2),	no	one	wants	to	have	to	hear	him	say	again	“I	told	you	so”	if	we	don’t	have	enough	addresses	in	the	next
version	of	the	Internet	Protocol.	What	does	this	suggest	to	you?	That	we	need	a	lot	more	addresses.	That	we	need	not	just	twice	as	many	addresses,	not	a	billion	times	as	many,	not	a	thousand	trillion	times	as	many,	but	79	MILLION	BILLION	TRILLION	times	as	many	possible	addresses!	That’ll	show	’em!	You’re	saying,	“Beej,	is	that	true?	I	have	every
reason	to	disbelieve	large	numbers.”	Well,	the	difference	between	32	bits	and	128	bits	might	not	sound	like	a	lot;	it’s	only	96	more	bits,	right?	But	remember,	we’re	talking	powers	here:	32	bits	represents	some	4	billion	numbers	(232),	while	128	bits	represents	about	340	trillion	trillion	trillion	numbers	(for	real,	2128).	That’s	like	a	million	IPv4
Internets	for	every	single	star	in	the	Universe.	Forget	this	dots-and-numbers	look	of	IPv4,	too;	now	we’ve	got	a	hexadecimal	representation,	with	each	two-byte	chunk	separated	by	a	colon,	like	this:	2001:0db8:c9d2:aee5:73e3:934a:a5ae:9551	That’s	not	all!	Lots	of	times,	you’ll	have	an	IP	address	with	lots	of	zeros	in	it,	and	you	can	compress	them
between	two	colons.	And	you	can	leave	off	leading	zeros	for	each	byte	pair.	For	instance,	each	of	these	pairs	of	addresses	are	equivalent:	2001:0db8:c9d2:0012:0000:0000:0000:0051	2001:db8:c9d2:12::51	2001:0db8:ab00:0000:0000:0000:0000:0000	2001:db8:ab00::	0000:0000:0000:0000:0000:0000:0000:0001	::1	The	address	::1	is	the	loopback
address.	It	always	means	“this	machine	I’m	running	on	now”.	In	IPv4,	the	loopback	address	is	127.0.0.1.	Finally,	there’s	an	IPv4-compatibility	mode	for	IPv6	addresses	that	you	might	come	across.	If	you	want,	for	example,	to	represent	the	IPv4	address	192.0.2.33	as	an	IPv6	address,	you	use	the	following	notation:	“::ffff:192.0.2.33”.	We’re	talking
serious	fun.	In	fact,	it’s	such	serious	fun,	that	the	Creators	of	IPv6	have	quite	cavalierly	lopped	off	trillions	and	trillions	of	addresses	for	reserved	use,	but	we	have	so	many,	frankly,	who’s	even	counting	anymore?	There	are	plenty	left	over	for	every	man,	woman,	child,	puppy,	and	parking	meter	on	every	planet	in	the	galaxy.	And	believe	me,	every
planet	in	the	galaxy	has	parking	meters.	You	know	it’s	true.	For	organizational	reasons,	it’s	sometimes	convenient	to	declare	that	"this	first	part	of	this	IP	address	up	through	this	bit	is	the	network	portion	of	the	IP	address,	and	the	remainder	is	the	host	portion.	For	instance,	with	IPv4,	you	might	have	192.0.2.12,	and	we	could	say	that	the	first	three
bytes	are	the	network	and	the	last	byte	was	the	host.	Or,	put	another	way,	we’re	talking	about	host	12	on	network	192.0.2.0	(see	how	we	zero	out	the	byte	that	was	the	host).	And	now	for	more	outdated	information!	Ready?	In	the	Ancient	Times,	there	were	“classes”	of	subnets,	where	the	first	one,	two,	or	three	bytes	of	the	address	was	the	network
part.	If	you	were	lucky	enough	to	have	one	byte	for	the	network	and	three	for	the	host,	you	could	have	24	bits-worth	of	hosts	on	your	network	(16	million	or	so).	That	was	a	“Class	A”	network.	On	the	opposite	end	was	a	“Class	C”,	with	three	bytes	of	network,	and	one	byte	of	host	(256	hosts,	minus	a	couple	that	were	reserved).	So	as	you	can	see,	there
were	just	a	few	Class	As,	a	huge	pile	of	Class	Cs,	and	some	Class	Bs	in	the	middle.	The	network	portion	of	the	IP	address	is	described	by	something	called	the	netmask,	which	you	bitwise-AND	with	the	IP	address	to	get	the	network	number	out	of	it.	The	netmask	usually	looks	something	like	255.255.255.0.	(E.g.	with	that	netmask,	if	your	IP	is
192.0.2.12,	then	your	network	is	192.0.2.12	AND	255.255.255.0	which	gives	192.0.2.0.)	Unfortunately,	it	turned	out	that	this	wasn’t	fine-grained	enough	for	the	eventual	needs	of	the	Internet;	we	were	running	out	of	Class	C	networks	quite	quickly,	and	we	were	most	definitely	out	of	Class	As,	so	don’t	even	bother	to	ask.	To	remedy	this,	The	Powers
That	Be	allowed	for	the	netmask	to	be	an	arbitrary	number	of	bits,	not	just	8,	16,	or	24.	So	you	might	have	a	netmask	of,	say	255.255.255.252,	which	is	30	bits	of	network,	and	2	bits	of	host	allowing	for	four	hosts	on	the	network.	(Note	that	the	netmask	is	ALWAYS	a	bunch	of	1-bits	followed	by	a	bunch	of	0-bits.)	But	it’s	a	bit	unwieldy	to	use	a	big
string	of	numbers	like	255.192.0.0	as	a	netmask.	First	of	all,	people	don’t	have	an	intuitive	idea	of	how	many	bits	that	is,	and	secondly,	it’s	really	not	compact.	So	the	New	Style	came	along,	and	it’s	much	nicer.	You	just	put	a	slash	after	the	IP	address,	and	then	follow	that	by	the	number	of	network	bits	in	decimal.	Like	this:	192.0.2.12/30.	Or,	for	IPv6,
something	like	this:	2001:db8::/32	or	2001:db8:5413:4028::9db9/64.	Port	Numbers	If	you’ll	kindly	remember,	I	presented	you	earlier	with	the	Layered	Network	Model	which	had	the	Internet	Layer	(IP)	split	off	from	the	Host-to-Host	Transport	Layer	(TCP	and	UDP).	Get	up	to	speed	on	that	before	the	next	paragraph.	Turns	out	that	besides	an	IP
address	(used	by	the	IP	layer),	there	is	another	address	that	is	used	by	TCP	(stream	sockets)	and,	coincidentally,	by	UDP	(datagram	sockets).	It	is	the	port	number.	It’s	a	16-bit	number	that’s	like	the	local	address	for	the	connection.	Think	of	the	IP	address	as	the	street	address	of	a	hotel,	and	the	port	number	as	the	room	number.	That’s	a	decent
analogy;	maybe	later	I’ll	come	up	with	one	involving	the	automobile	industry.	Say	you	want	to	have	a	computer	that	handles	incoming	mail	AND	web	services—how	do	you	differentiate	between	the	two	on	a	computer	with	a	single	IP	address?	Well,	different	services	on	the	Internet	have	different	well-known	port	numbers.	You	can	see	them	all	in	the
Big	IANA	Port	List15	or,	if	you’re	on	a	Unix	box,	in	your	/etc/services	file.	HTTP	(the	web)	is	port	80,	telnet	is	port	23,	SMTP	is	port	25,	the	game	DOOM16	used	port	666,	etc.	and	so	on.	Ports	under	1024	are	often	considered	special,	and	usually	require	special	OS	privileges	to	use.	And	that’s	about	it!	Byte	Order	By	Order	of	the	Realm!	There	shall	be
two	byte	orderings,	hereafter	to	be	known	as	Lame	and	Magnificent!	I	joke,	but	one	really	is	better	than	the	other.	:-)	There	really	is	no	easy	way	to	say	this,	so	I’ll	just	blurt	it	out:	your	computer	might	have	been	storing	bytes	in	reverse	order	behind	your	back.	I	know!	No	one	wanted	to	have	to	tell	you.	The	thing	is,	everyone	in	the	Internet	world	has
generally	agreed	that	if	you	want	to	represent	the	two-byte	hex	number,	say	b34f,	you’ll	store	it	in	two	sequential	bytes	b3	followed	by	4f.	Makes	sense,	and,	as	Wilford	Brimley17	would	tell	you,	it’s	the	Right	Thing	To	Do.	This	number,	stored	with	the	big	end	first,	is	called	Big-Endian.	Unfortunately,	a	few	computers	scattered	here	and	there
throughout	the	world,	namely	anything	with	an	Intel	or	Intel-compatible	processor,	store	the	bytes	reversed,	so	b34f	would	be	stored	in	memory	as	the	sequential	bytes	4f	followed	by	b3.	This	storage	method	is	called	Little-Endian.	But	wait,	I’m	not	done	with	terminology	yet!	The	more-sane	Big-Endian	is	also	called	Network	Byte	Order	because	that’s
the	order	us	network	types	like.	Your	computer	stores	numbers	in	Host	Byte	Order.	If	it’s	an	Intel	80x86,	Host	Byte	Order	is	Little-Endian.	If	it’s	a	Motorola	68k,	Host	Byte	Order	is	Big-Endian.	If	it’s	a	PowerPC,	Host	Byte	Order	is…	well,	it	depends!	A	lot	of	times	when	you’re	building	packets	or	filling	out	data	structures	you’ll	need	to	make	sure	your
two-	and	four-byte	numbers	are	in	Network	Byte	Order.	But	how	can	you	do	this	if	you	don’t	know	the	native	Host	Byte	Order?	Good	news!	You	just	get	to	assume	the	Host	Byte	Order	isn’t	right,	and	you	always	run	the	value	through	a	function	to	set	it	to	Network	Byte	Order.	The	function	will	do	the	magic	conversion	if	it	has	to,	and	this	way	your
code	is	portable	to	machines	of	differing	endianness.	All	righty.	There	are	two	types	of	numbers	that	you	can	convert:	short	(two	bytes)	and	long	(four	bytes).	These	functions	work	for	the	unsigned	variations	as	well.	Say	you	want	to	convert	a	short	from	Host	Byte	Order	to	Network	Byte	Order.	Start	with	“h”	for	“host”,	follow	it	with	“to”,	then	“n”	for
“network”,	and	“s”	for	“short”:	h-to-n-s,	or	htons()	(read:	“Host	to	Network	Short”).	It’s	almost	too	easy…	You	can	use	every	combination	of	“n”,	“h”,	“s”,	and	“l”	you	want,	not	counting	the	really	stupid	ones.	For	example,	there	is	NOT	a	stolh()	(“Short	to	Long	Host”)	function—not	at	this	party,	anyway.	But	there	are:	htons()	host	to	network	short
htonl()	host	to	network	long	ntohs()	network	to	host	short	ntohl()	network	to	host	long	Basically,	you’ll	want	to	convert	the	numbers	to	Network	Byte	Order	before	they	go	out	on	the	wire,	and	convert	them	to	Host	Byte	Order	as	they	come	in	off	the	wire.	I	don’t	know	of	a	64-bit	variant,	sorry.	And	if	you	want	to	do	floating	point,	check	out	the	section
on	Serialization,	far	below.	Assume	the	numbers	in	this	document	are	in	Host	Byte	Order	unless	I	say	otherwise.	structs	Well,	we’re	finally	here.	It’s	time	to	talk	about	programming.	In	this	section,	I’ll	cover	various	data	types	used	by	the	sockets	interface,	since	some	of	them	are	a	real	bear	to	figure	out.	First	the	easy	one:	a	socket	descriptor.	A
socket	descriptor	is	the	following	type:	Just	a	regular	int.	Things	get	weird	from	here,	so	just	read	through	and	bear	with	me.	My	First	Struct™—struct	addrinfo.	This	structure	is	a	more	recent	invention,	and	is	used	to	prep	the	socket	address	structures	for	subsequent	use.	It’s	also	used	in	host	name	lookups,	and	service	name	lookups.	That’ll	make
more	sense	later	when	we	get	to	actual	usage,	but	just	know	for	now	that	it’s	one	of	the	first	things	you’ll	call	when	making	a	connection.	struct	addrinfo	{	int	ai_flags;	//	AI_PASSIVE,	AI_CANONNAME,	etc.	int	ai_family;	//	AF_INET,	AF_INET6,	AF_UNSPEC	int	ai_socktype;	//	SOCK_STREAM,	SOCK_DGRAM	int	ai_protocol;	//	use	0	for	"any"	size_t
ai_addrlen;	//	size	of	ai_addr	in	bytes	struct	sockaddr	*ai_addr;	//	struct	sockaddr_in	or	_in6	char	*ai_canonname;	//	full	canonical	hostname	struct	addrinfo	*ai_next;	//	linked	list,	next	node	};	You’ll	load	this	struct	up	a	bit,	and	then	call	getaddrinfo().	It’ll	return	a	pointer	to	a	new	linked	list	of	these	structures	filled	out	with	all	the	goodies	you	need.	You
can	force	it	to	use	IPv4	or	IPv6	in	the	ai_family	field,	or	leave	it	as	AF_UNSPEC	to	use	whatever.	This	is	cool	because	your	code	can	be	IP	version-agnostic.	Note	that	this	is	a	linked	list:	ai_next	points	at	the	next	element—there	could	be	several	results	for	you	to	choose	from.	I’d	use	the	first	result	that	worked,	but	you	might	have	different	business
needs;	I	don’t	know	everything,	man!	You’ll	see	that	the	ai_addr	field	in	the	struct	addrinfo	is	a	pointer	to	a	struct	sockaddr.	This	is	where	we	start	getting	into	the	nitty-gritty	details	of	what’s	inside	an	IP	address	structure.	You	might	not	usually	need	to	write	to	these	structures;	oftentimes,	a	call	to	getaddrinfo()	to	fill	out	your	struct	addrinfo	for	you
is	all	you’ll	need.	You	will,	however,	have	to	peer	inside	these	structs	to	get	the	values	out,	so	I’m	presenting	them	here.	(Also,	all	the	code	written	before	struct	addrinfo	was	invented	we	packed	all	this	stuff	by	hand,	so	you’ll	see	a	lot	of	IPv4	code	out	in	the	wild	that	does	exactly	that.	You	know,	in	old	versions	of	this	guide	and	so	on.)	Some	structs	are
IPv4,	some	are	IPv6,	and	some	are	both.	I’ll	make	notes	of	which	are	what.	Anyway,	the	struct	sockaddr	holds	socket	address	information	for	many	types	of	sockets.	struct	sockaddr	{	unsigned	short	sa_family;	//	address	family,	AF_xxx	char	sa_data[14];	//	14	bytes	of	protocol	address	};	sa_family	can	be	a	variety	of	things,	but	it’ll	be	AF_INET	(IPv4)	or
AF_INET6	(IPv6)	for	everything	we	do	in	this	document.	sa_data	contains	a	destination	address	and	port	number	for	the	socket.	This	is	rather	unwieldy	since	you	don’t	want	to	tediously	pack	the	address	in	the	sa_data	by	hand.	To	deal	with	struct	sockaddr,	programmers	created	a	parallel	structure:	struct	sockaddr_in	(“in”	for	“Internet”)	to	be	used
with	IPv4.	And	this	is	the	important	bit:	a	pointer	to	a	struct	sockaddr_in	can	be	cast	to	a	pointer	to	a	struct	sockaddr	and	vice-versa.	So	even	though	connect()	wants	a	struct	sockaddr*,	you	can	still	use	a	struct	sockaddr_in	and	cast	it	at	the	last	minute!	//	(IPv4	only--see	struct	sockaddr_in6	for	IPv6)	struct	sockaddr_in	{	short	int	sin_family;	//	Address
family,	AF_INET	unsigned	short	int	sin_port;	//	Port	number	struct	in_addr	sin_addr;	//	Internet	address	unsigned	char	sin_zero[8];	//	Same	size	as	struct	sockaddr	};	This	structure	makes	it	easy	to	reference	elements	of	the	socket	address.	Note	that	sin_zero	(which	is	included	to	pad	the	structure	to	the	length	of	a	struct	sockaddr)	should	be	set	to	all
zeros	with	the	function	memset().	Also,	notice	that	sin_family	corresponds	to	sa_family	in	a	struct	sockaddr	and	should	be	set	to	“AF_INET”.	Finally,	the	sin_port	must	be	in	Network	Byte	Order	(by	using	htons()!)	Let’s	dig	deeper!	You	see	the	sin_addr	field	is	a	struct	in_addr.	What	is	that	thing?	Well,	not	to	be	overly	dramatic,	but	it’s	one	of	the
scariest	unions	of	all	time:	//	(IPv4	only--see	struct	in6_addr	for	IPv6)	//	Internet	address	(a	structure	for	historical	reasons)	struct	in_addr	{	uint32_t	s_addr;	//	that's	a	32-bit	int	(4	bytes)	};	Whoa!	Well,	it	used	to	be	a	union,	but	now	those	days	seem	to	be	gone.	Good	riddance.	So	if	you	have	declared	ina	to	be	of	type	struct	sockaddr_in,	then
ina.sin_addr.s_addr	references	the	4-byte	IP	address	(in	Network	Byte	Order).	Note	that	even	if	your	system	still	uses	the	God-awful	union	for	struct	in_addr,	you	can	still	reference	the	4-byte	IP	address	in	exactly	the	same	way	as	I	did	above	(this	due	to	#defines).	What	about	IPv6?	Similar	structs	exist	for	it,	as	well:	//	(IPv6	only--see	struct
sockaddr_in	and	struct	in_addr	for	IPv4)	struct	sockaddr_in6	{	u_int16_t	sin6_family;	//	address	family,	AF_INET6	u_int16_t	sin6_port;	//	port	number,	Network	Byte	Order	u_int32_t	sin6_flowinfo;	//	IPv6	flow	information	struct	in6_addr	sin6_addr;	//	IPv6	address	u_int32_t	sin6_scope_id;	//	Scope	ID	};	struct	in6_addr	{	unsigned	char	s6_addr[16];	//
IPv6	address	};	Note	that	IPv6	has	an	IPv6	address	and	a	port	number,	just	like	IPv4	has	an	IPv4	address	and	a	port	number.	Also	note	that	I’m	not	going	to	talk	about	the	IPv6	flow	information	or	Scope	ID	fields	for	the	moment…	this	is	just	a	starter	guide.	:-)	Last	but	not	least,	here	is	another	simple	structure,	struct	sockaddr_storage	that	is	designed
to	be	large	enough	to	hold	both	IPv4	and	IPv6	structures.	See,	for	some	calls,	sometimes	you	don’t	know	in	advance	if	it’s	going	to	fill	out	your	struct	sockaddr	with	an	IPv4	or	IPv6	address.	So	you	pass	in	this	parallel	structure,	very	similar	to	struct	sockaddr	except	larger,	and	then	cast	it	to	the	type	you	need:	struct	sockaddr_storage	{	sa_family_t
ss_family;	//	address	family	//	all	this	is	padding,	implementation	specific,	ignore	it:	char	__ss_pad1[_SS_PAD1SIZE];	int64_t	__ss_align;	char	__ss_pad2[_SS_PAD2SIZE];	};	What’s	important	is	that	you	can	see	the	address	family	in	the	ss_family	field—check	this	to	see	if	it’s	AF_INET	or	AF_INET6	(for	IPv4	or	IPv6).	Then	you	can	cast	it	to	a	struct
sockaddr_in	or	struct	sockaddr_in6	if	you	wanna.	IP	Addresses,	Part	Deux	Fortunately	for	you,	there	are	a	bunch	of	functions	that	allow	you	to	manipulate	IP	addresses.	No	need	to	figure	them	out	by	hand	and	stuff	them	in	a	long	with	the	ai_family,	res->ai_socktype,	res->ai_protocol);	bind(sockfd,	res->ai_addr,	res->ai_addrlen);	listen(sockfd,
BACKLOG);	//	now	accept	an	incoming	connection:	addr_size	=	sizeof	their_addr;	new_fd	=	accept(sockfd,	(struct	sockaddr	*)&their_addr,	&addr_size);	//	ready	to	communicate	on	socket	descriptor	new_fd!	.	.	.	Again,	note	that	we	will	use	the	socket	descriptor	new_fd	for	all	send()	and	recv()	calls.	If	you’re	only	getting	one	single	connection	ever,	you
can	close()	the	listening	sockfd	in	order	to	prevent	more	incoming	connections	on	the	same	port,	if	you	so	desire.	send()	and	recv()—Talk	to	me,	baby!	These	two	functions	are	for	communicating	over	stream	sockets	or	connected	datagram	sockets.	If	you	want	to	use	regular	unconnected	datagram	sockets,	you’ll	need	to	see	the	section	on	sendto()	and
recvfrom(),	below.	The	send()	call:	int	send(int	sockfd,	const	void	*msg,	int	len,	int	flags);	sockfd	is	the	socket	descriptor	you	want	to	send	data	to	(whether	it’s	the	one	returned	by	socket()	or	the	one	you	got	with	accept()).	msg	is	a	pointer	to	the	data	you	want	to	send,	and	len	is	the	length	of	that	data	in	bytes.	Just	set	flags	to	0.	(See	the	send()	man
page	for	more	information	concerning	flags.)	Some	sample	code	might	be:	char	*msg	=	"Beej	was	here!";	int	len,	bytes_sent;	.	.	.	len	=	strlen(msg);	bytes_sent	=	send(sockfd,	msg,	len,	0);	.	.	.	send()	returns	the	number	of	bytes	actually	sent	out—this	might	be	less	than	the	number	you	told	it	to	send!	See,	sometimes	you	tell	it	to	send	a	whole	gob	of
data	and	it	just	can’t	handle	it.	It’ll	fire	off	as	much	of	the	data	as	it	can,	and	trust	you	to	send	the	rest	later.	Remember,	if	the	value	returned	by	send()	doesn’t	match	the	value	in	len,	it’s	up	to	you	to	send	the	rest	of	the	string.	The	good	news	is	this:	if	the	packet	is	small	(less	than	1K	or	so)	it	will	probably	manage	to	send	the	whole	thing	all	in	one	go.
Again,	-1	is	returned	on	error,	and	errno	is	set	to	the	error	number.	The	recv()	call	is	similar	in	many	respects:	int	recv(int	sockfd,	void	*buf,	int	len,	int	flags);	sockfd	is	the	socket	descriptor	to	read	from,	buf	is	the	buffer	to	read	the	information	into,	len	is	the	maximum	length	of	the	buffer,	and	flags	can	again	be	set	to	0.	(See	the	recv()	man	page	for
flag	information.)	recv()	returns	the	number	of	bytes	actually	read	into	the	buffer,	or	-1	on	error	(with	errno	set,	accordingly).	Wait!	recv()	can	return	0.	This	can	mean	only	one	thing:	the	remote	side	has	closed	the	connection	on	you!	A	return	value	of	0	is	recv()’s	way	of	letting	you	know	this	has	occurred.	There,	that	was	easy,	wasn’t	it?	You	can	now
pass	data	back	and	forth	on	stream	sockets!	Whee!	You’re	a	Unix	Network	Programmer!	sendto()	and	recvfrom()—Talk	to	me,	DGRAM-style	“This	is	all	fine	and	dandy,”	I	hear	you	saying,	“but	where	does	this	leave	me	with	unconnected	datagram	sockets?”	No	problemo,	amigo.	We	have	just	the	thing.	Since	datagram	sockets	aren’t	connected	to	a
remote	host,	guess	which	piece	of	information	we	need	to	give	before	we	send	a	packet?	That’s	right!	The	destination	address!	Here’s	the	scoop:	int	sendto(int	sockfd,	const	void	*msg,	int	len,	unsigned	int	flags,	const	struct	sockaddr	*to,	socklen_t	tolen);	As	you	can	see,	this	call	is	basically	the	same	as	the	call	to	send()	with	the	addition	of	two	other
pieces	of	information.	to	is	a	pointer	to	a	struct	sockaddr	(which	will	probably	be	another	struct	sockaddr_in	or	struct	sockaddr_in6	or	struct	sockaddr_storage	that	you	cast	at	the	last	minute)	which	contains	the	destination	IP	address	and	port.	tolen,	an	int	deep-down,	can	simply	be	set	to	sizeof	*to	or	sizeof(struct	sockaddr_storage).	To	get	your	hands
on	the	destination	address	structure,	you’ll	probably	either	get	it	from	getaddrinfo(),	or	from	recvfrom(),	below,	or	you’ll	fill	it	out	by	hand.	Just	like	with	send(),	sendto()	returns	the	number	of	bytes	actually	sent	(which,	again,	might	be	less	than	the	number	of	bytes	you	told	it	to	send!),	or	-1	on	error.	Equally	similar	are	recv()	and	recvfrom().	The
synopsis	of	recvfrom()	is:	int	recvfrom(int	sockfd,	void	*buf,	int	len,	unsigned	int	flags,	struct	sockaddr	*from,	int	*fromlen);	Again,	this	is	just	like	recv()	with	the	addition	of	a	couple	fields.	from	is	a	pointer	to	a	local	struct	sockaddr_storage	that	will	be	filled	with	the	IP	address	and	port	of	the	originating	machine.	fromlen	is	a	pointer	to	a	local	int	that
should	be	initialized	to	sizeof	*from	or	sizeof(struct	sockaddr_storage).	When	the	function	returns,	fromlen	will	contain	the	length	of	the	address	actually	stored	in	from.	recvfrom()	returns	the	number	of	bytes	received,	or	-1	on	error	(with	errno	set	accordingly).	So,	here’s	a	question:	why	do	we	use	struct	sockaddr_storage	as	the	socket	type?	Why	not
struct	sockaddr_in?	Because,	you	see,	we	want	to	not	tie	ourselves	down	to	IPv4	or	IPv6.	So	we	use	the	generic	struct	sockaddr_storage	which	we	know	will	be	big	enough	for	either.	(So…	here’s	another	question:	why	isn’t	struct	sockaddr	itself	big	enough	for	any	address?	We	even	cast	the	general-purpose	struct	sockaddr_storage	to	the	general-
purpose	struct	sockaddr!	Seems	extraneous	and	redundant,	huh.	The	answer	is,	it	just	isn’t	big	enough,	and	I’d	guess	that	changing	it	at	this	point	would	be	Problematic.	So	they	made	a	new	one.)	Remember,	if	you	connect()	a	datagram	socket,	you	can	then	simply	use	send()	and	recv()	for	all	your	transactions.	The	socket	itself	is	still	a	datagram
socket	and	the	packets	still	use	UDP,	but	the	socket	interface	will	automatically	add	the	destination	and	source	information	for	you.	close()	and	shutdown()—Get	outta	my	face!	Whew!	You’ve	been	send()ing	and	recv()ing	data	all	day	long,	and	you’ve	had	it.	You’re	ready	to	close	the	connection	on	your	socket	descriptor.	This	is	easy.	You	can	just	use
the	regular	Unix	file	descriptor	close()	function:	This	will	prevent	any	more	reads	and	writes	to	the	socket.	Anyone	attempting	to	read	or	write	the	socket	on	the	remote	end	will	receive	an	error.	Just	in	case	you	want	a	little	more	control	over	how	the	socket	closes,	you	can	use	the	shutdown()	function.	It	allows	you	to	cut	off	communication	in	a	certain
direction,	or	both	ways	(just	like	close()	does).	Synopsis:	int	shutdown(int	sockfd,	int	how);	sockfd	is	the	socket	file	descriptor	you	want	to	shutdown,	and	how	is	one	of	the	following:	0	Further	receives	are	disallowed	1	Further	sends	are	disallowed	2	Further	sends	and	receives	are	disallowed	(like	close())	shutdown()	returns	0	on	success,	and	-1	on
error	(with	errno	set	accordingly).	If	you	deign	to	use	shutdown()	on	unconnected	datagram	sockets,	it	will	simply	make	the	socket	unavailable	for	further	send()	and	recv()	calls	(remember	that	you	can	use	these	if	you	connect()	your	datagram	socket).	It’s	important	to	note	that	shutdown()	doesn’t	actually	close	the	file	descriptor—it	just	changes	its
usability.	To	free	a	socket	descriptor,	you	need	to	use	close().	Nothing	to	it.	(Except	to	remember	that	if	you’re	using	Windows	and	Winsock	that	you	should	call	closesocket()	instead	of	close().)	getpeername()—Who	are	you?	This	function	is	so	easy.	It’s	so	easy,	I	almost	didn’t	give	it	its	own	section.	But	here	it	is	anyway.	The	function	getpeername()
will	tell	you	who	is	at	the	other	end	of	a	connected	stream	socket.	The	synopsis:	#include	int	getpeername(int	sockfd,	struct	sockaddr	*addr,	int	*addrlen);	sockfd	is	the	descriptor	of	the	connected	stream	socket,	addr	is	a	pointer	to	a	struct	sockaddr	(or	a	struct	sockaddr_in)	that	will	hold	the	information	about	the	other	side	of	the	connection,	and
addrlen	is	a	pointer	to	an	int,	that	should	be	initialized	to	sizeof	*addr	or	sizeof(struct	sockaddr).	The	function	returns	-1	on	error	and	sets	errno	accordingly.	Once	you	have	their	address,	you	can	use	inet_ntop(),	getnameinfo(),	or	gethostbyaddr()	to	print	or	get	more	information.	No,	you	can’t	get	their	login	name.	(Ok,	ok.	If	the	other	computer	is
running	an	ident	daemon,	this	is	possible.	This,	however,	is	beyond	the	scope	of	this	document.	Check	out	RFC	141322	for	more	info.)	gethostname()—Who	am	I?	Even	easier	than	getpeername()	is	the	function	gethostname().	It	returns	the	name	of	the	computer	that	your	program	is	running	on.	The	name	can	then	be	used	by	gethostbyname(),	below,
to	determine	the	IP	address	of	your	local	machine.	What	could	be	more	fun?	I	could	think	of	a	few	things,	but	they	don’t	pertain	to	socket	programming.	Anyway,	here’s	the	breakdown:	#include	int	gethostname(char	*hostname,	size_t	size);	The	arguments	are	simple:	hostname	is	a	pointer	to	an	array	of	chars	that	will	contain	the	hostname	upon	the
function’s	return,	and	size	is	the	length	in	bytes	of	the	hostname	array.	The	function	returns	0	on	successful	completion,	and	-1	on	error,	setting	errno	as	usual.	Client-Server	Background	It’s	a	client-server	world,	baby.	Just	about	everything	on	the	network	deals	with	client	processes	talking	to	server	processes	and	vice-versa.	Take	telnet,	for	instance.
When	you	connect	to	a	remote	host	on	port	23	with	telnet	(the	client),	a	program	on	that	host	(called	telnetd,	the	server)	springs	to	life.	It	handles	the	incoming	telnet	connection,	sets	you	up	with	a	login	prompt,	etc.	Client-Server	Interaction.	The	exchange	of	information	between	client	and	server	is	summarized	in	the	above	diagram.	Note	that	the
client-server	pair	can	speak	SOCK_STREAM,	SOCK_DGRAM,	or	anything	else	(as	long	as	they’re	speaking	the	same	thing).	Some	good	examples	of	client-server	pairs	are	telnet/telnetd,	ftp/ftpd,	or	Firefox/Apache.	Every	time	you	use	ftp,	there’s	a	remote	program,	ftpd,	that	serves	you.	Often,	there	will	only	be	one	server	on	a	machine,	and	that	server
will	handle	multiple	clients	using	fork().	The	basic	routine	is:	server	will	wait	for	a	connection,	accept()	it,	and	fork()	a	child	process	to	handle	it.	This	is	what	our	sample	server	does	in	the	next	section.	A	Simple	Stream	Server	All	this	server	does	is	send	the	string	“Hello,	world!”	out	over	a	stream	connection.	All	you	need	to	do	to	test	this	server	is	run
it	in	one	window,	and	telnet	to	it	from	another	with:	$	telnet	remotehostname	3490	where	remotehostname	is	the	name	of	the	machine	you’re	running	it	on.	The	server	code23:	/*	**	server.c	--	a	stream	socket	server	demo	*/	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#define
PORT	"3490"	//	the	port	users	will	be	connecting	to	#define	BACKLOG	10	//	how	many	pending	connections	queue	will	hold	void	sigchld_handler(int	s)	{	//	waitpid()	might	overwrite	errno,	so	we	save	and	restore	it:	int	saved_errno	=	errno;	while(waitpid(-1,	NULL,	WNOHANG)	>	0);	errno	=	saved_errno;	}	//	get	sockaddr,	IPv4	or	IPv6:	void
*get_in_addr(struct	sockaddr	*sa)	{	if	(sa->sa_family	==	AF_INET)	{	return	&(((struct	sockaddr_in*)sa)->sin_addr);	}	return	&(((struct	sockaddr_in6*)sa)->sin6_addr);	}	int	main(void)	{	int	sockfd,	new_fd;	//	listen	on	sock_fd,	new	connection	on	new_fd	struct	addrinfo	hints,	*servinfo,	*p;	struct	sockaddr_storage	their_addr;	//	connector's	address
information	socklen_t	sin_size;	struct	sigaction	sa;	int	yes=1;	char	s[INET6_ADDRSTRLEN];	int	rv;	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	//	use	my	IP	if	((rv	=	getaddrinfo(NULL,	PORT,	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",
gai_strerror(rv));	return	1;	}	//	loop	through	all	the	results	and	bind	to	the	first	we	can	for(p	=	servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("server:	socket");	continue;	}	if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)	{	perror("setsockopt");
exit(1);	}	if	(bind(sockfd,	p->ai_addr,	p->ai_addrlen)	==	-1)	{	close(sockfd);	perror("server:	bind");	continue;	}	break;	}	freeaddrinfo(servinfo);	//	all	done	with	this	structure	if	(p	==	NULL)	{	fprintf(stderr,	"server:	failed	to	bind");	exit(1);	}	if	(listen(sockfd,	BACKLOG)	==	-1)	{	perror("listen");	exit(1);	}	sa.sa_handler	=	sigchld_handler;	//	reap	all	dead
processes	sigemptyset(&sa.sa_mask);	sa.sa_flags	=	SA_RESTART;	if	(sigaction(SIGCHLD,	&sa,	NULL)	==	-1)	{	perror("sigaction");	exit(1);	}	printf("server:	waiting	for	connections...");	while(1)	{	//	main	accept()	loop	sin_size	=	sizeof	their_addr;	new_fd	=	accept(sockfd,	(struct	sockaddr	*)&their_addr,	&sin_size);	if	(new_fd	==	-1)	{	perror("accept");
continue;	}	inet_ntop(their_addr.ss_family,	get_in_addr((struct	sockaddr	*)&their_addr),	s,	sizeof	s);	printf("server:	got	connection	from	%s",	s);	if	(!fork())	{	//	this	is	the	child	process	close(sockfd);	//	child	doesn't	need	the	listener	if	(send(new_fd,	"Hello,	world!",	13,	0)	==	-1)	perror("send");	close(new_fd);	exit(0);	}	close(new_fd);	//	parent	doesn't
need	this	}	return	0;	}	In	case	you’re	curious,	I	have	the	code	in	one	big	main()	function	for	(I	feel)	syntactic	clarity.	Feel	free	to	split	it	into	smaller	functions	if	it	makes	you	feel	better.	(Also,	this	whole	sigaction()	thing	might	be	new	to	you—that’s	ok.	The	code	that’s	there	is	responsible	for	reaping	zombie	processes	that	appear	as	the	fork()ed	child
processes	exit.	If	you	make	lots	of	zombies	and	don’t	reap	them,	your	system	administrator	will	become	agitated.)	You	can	get	the	data	from	this	server	by	using	the	client	listed	in	the	next	section.	A	Simple	Stream	Client	This	guy’s	even	easier	than	the	server.	All	this	client	does	is	connect	to	the	host	you	specify	on	the	command	line,	port	3490.	It
gets	the	string	that	the	server	sends.	The	client	source24:	/*	**	client.c	--	a	stream	socket	client	demo	*/	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#define	PORT	"3490"	//	the	port	client	will	be	connecting	to	#define	MAXDATASIZE	100	//	max	number	of	bytes	we	can	get	at	once	//	get	sockaddr,
IPv4	or	IPv6:	void	*get_in_addr(struct	sockaddr	*sa)	{	if	(sa->sa_family	==	AF_INET)	{	return	&(((struct	sockaddr_in*)sa)->sin_addr);	}	return	&(((struct	sockaddr_in6*)sa)->sin6_addr);	}	int	main(int	argc,	char	*argv[])	{	int	sockfd,	numbytes;	char	buf[MAXDATASIZE];	struct	addrinfo	hints,	*servinfo,	*p;	int	rv;	char	s[INET6_ADDRSTRLEN];	if	(argc
!=	2)	{	fprintf(stderr,"usage:	client	hostname");	exit(1);	}	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	hints.ai_socktype	=	SOCK_STREAM;	if	((rv	=	getaddrinfo(argv[1],	PORT,	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",	gai_strerror(rv));	return	1;	}	//	loop	through	all	the	results	and	connect	to	the	first	we	can	for(p
=	servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("client:	socket");	continue;	}	if	(connect(sockfd,	p->ai_addr,	p->ai_addrlen)	==	-1)	{	close(sockfd);	perror("client:	connect");	continue;	}	break;	}	if	(p	==	NULL)	{	fprintf(stderr,	"client:	failed	to	connect");	return	2;	}
inet_ntop(p->ai_family,	get_in_addr((struct	sockaddr	*)p->ai_addr),	s,	sizeof	s);	printf("client:	connecting	to	%s",	s);	freeaddrinfo(servinfo);	//	all	done	with	this	structure	if	((numbytes	=	recv(sockfd,	buf,	MAXDATASIZE-1,	0))	==	-1)	{	perror("recv");	exit(1);	}	buf[numbytes]	=	'\0';	printf("client:	received	'%s'",buf);	close(sockfd);	return	0;	}	Notice	that
if	you	don’t	run	the	server	before	you	run	the	client,	connect()	returns	“Connection	refused”.	Very	useful.	Datagram	Sockets	We’ve	already	covered	the	basics	of	UDP	datagram	sockets	with	our	discussion	of	sendto()	and	recvfrom(),	above,	so	I’ll	just	present	a	couple	of	sample	programs:	talker.c	and	listener.c.	listener	sits	on	a	machine	waiting	for	an
incoming	packet	on	port	4950.	talker	sends	a	packet	to	that	port,	on	the	specified	machine,	that	contains	whatever	the	user	enters	on	the	command	line.	Because	datagram	sockets	are	connectionless	and	just	fire	packets	off	into	the	ether	with	callous	disregard	for	success,	we	are	going	to	tell	the	client	and	server	to	use	specifically	IPv6.	This	way	we
avoid	the	situation	where	the	server	is	listening	on	IPv6	and	the	client	sends	on	IPv4;	the	data	simply	would	not	be	received.	(In	our	connected	TCP	stream	sockets	world,	we	might	still	have	the	mismatch,	but	the	error	on	connect()	for	one	address	family	would	cause	us	to	retry	for	the	other.)	Here	is	the	source	for	listener.c25:	/*	**	listener.c	--	a
datagram	sockets	"server"	demo	*/	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#define	MYPORT	"4950"	//	the	port	users	will	be	connecting	to	#define	MAXBUFLEN	100	//	get	sockaddr,	IPv4	or	IPv6:	void	*get_in_addr(struct	sockaddr	*sa)	{	if	(sa->sa_family	==	AF_INET)	{	return	&(((struct
sockaddr_in*)sa)->sin_addr);	}	return	&(((struct	sockaddr_in6*)sa)->sin6_addr);	}	int	main(void)	{	int	sockfd;	struct	addrinfo	hints,	*servinfo,	*p;	int	rv;	int	numbytes;	struct	sockaddr_storage	their_addr;	char	buf[MAXBUFLEN];	socklen_t	addr_len;	char	s[INET6_ADDRSTRLEN];	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_INET6;	//	set	to
AF_INET	to	use	IPv4	hints.ai_socktype	=	SOCK_DGRAM;	hints.ai_flags	=	AI_PASSIVE;	//	use	my	IP	if	((rv	=	getaddrinfo(NULL,	MYPORT,	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",	gai_strerror(rv));	return	1;	}	//	loop	through	all	the	results	and	bind	to	the	first	we	can	for(p	=	servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=
socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("listener:	socket");	continue;	}	if	(bind(sockfd,	p->ai_addr,	p->ai_addrlen)	==	-1)	{	close(sockfd);	perror("listener:	bind");	continue;	}	break;	}	if	(p	==	NULL)	{	fprintf(stderr,	"listener:	failed	to	bind	socket");	return	2;	}	freeaddrinfo(servinfo);	printf("listener:	waiting	to
recvfrom...");	addr_len	=	sizeof	their_addr;	if	((numbytes	=	recvfrom(sockfd,	buf,	MAXBUFLEN-1	,	0,	(struct	sockaddr	*)&their_addr,	&addr_len))	==	-1)	{	perror("recvfrom");	exit(1);	}	printf("listener:	got	packet	from	%s",	inet_ntop(their_addr.ss_family,	get_in_addr((struct	sockaddr	*)&their_addr),	s,	sizeof	s));	printf("listener:	packet	is	%d	bytes
long",	numbytes);	buf[numbytes]	=	'\0';	printf("listener:	packet	contains	\"%s\"",	buf);	close(sockfd);	return	0;	}	Notice	that	in	our	call	to	getaddrinfo()	we’re	finally	using	SOCK_DGRAM.	Also,	note	that	there’s	no	need	to	listen()	or	accept().	This	is	one	of	the	perks	of	using	unconnected	datagram	sockets!	Next	comes	the	source	for	talker.c26:	/*	**
talker.c	--	a	datagram	"client"	demo	*/	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#define	SERVERPORT	"4950"	//	the	port	users	will	be	connecting	to	int	main(int	argc,	char	*argv[])	{	int	sockfd;	struct	addrinfo	hints,	*servinfo,	*p;	int	rv;	int	numbytes;	if	(argc	!=	3)	{	fprintf(stderr,"usage:	talker
hostname	message");	exit(1);	}	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_INET6;	//	set	to	AF_INET	to	use	IPv4	hints.ai_socktype	=	SOCK_DGRAM;	if	((rv	=	getaddrinfo(argv[1],	SERVERPORT,	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",	gai_strerror(rv));	return	1;	}	//	loop	through	all	the	results	and	make	a	socket	for(p	=
servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("talker:	socket");	continue;	}	break;	}	if	(p	==	NULL)	{	fprintf(stderr,	"talker:	failed	to	create	socket");	return	2;	}	if	((numbytes	=	sendto(sockfd,	argv[2],	strlen(argv[2]),	0,	p->ai_addr,	p->ai_addrlen))	==	-1)	{	perror("talker:
sendto");	exit(1);	}	freeaddrinfo(servinfo);	printf("talker:	sent	%d	bytes	to	%s",	numbytes,	argv[1]);	close(sockfd);	return	0;	}	And	that’s	all	there	is	to	it!	Run	listener	on	some	machine,	then	run	talker	on	another.	Watch	them	communicate!	Fun	G-rated	excitement	for	the	entire	nuclear	family!	You	don’t	even	have	to	run	the	server	this	time!	You	can
run	talker	by	itself,	and	it	just	happily	fires	packets	off	into	the	ether	where	they	disappear	if	no	one	is	ready	with	a	recvfrom()	on	the	other	side.	Remember:	data	sent	using	UDP	datagram	sockets	isn’t	guaranteed	to	arrive!	Except	for	one	more	tiny	detail	that	I’ve	mentioned	many	times	in	the	past:	connected	datagram	sockets.	I	need	to	talk	about
this	here,	since	we’re	in	the	datagram	section	of	the	document.	Let’s	say	that	talker	calls	connect()	and	specifies	the	listener’s	address.	From	that	point	on,	talker	may	only	sent	to	and	receive	from	the	address	specified	by	connect().	For	this	reason,	you	don’t	have	to	use	sendto()	and	recvfrom();	you	can	simply	use	send()	and	recv().	Slightly	Advanced
Techniques	These	aren’t	really	advanced,	but	they’re	getting	out	of	the	more	basic	levels	we’ve	already	covered.	In	fact,	if	you’ve	gotten	this	far,	you	should	consider	yourself	fairly	accomplished	in	the	basics	of	Unix	network	programming!	Congratulations!	So	here	we	go	into	the	brave	new	world	of	some	of	the	more	esoteric	things	you	might	want	to
learn	about	sockets.	Have	at	it!	Blocking	Blocking.	You’ve	heard	about	it—now	what	the	heck	is	it?	In	a	nutshell,	“block”	is	techie	jargon	for	“sleep”.	You	probably	noticed	that	when	you	run	listener,	above,	it	just	sits	there	until	a	packet	arrives.	What	happened	is	that	it	called	recvfrom(),	there	was	no	data,	and	so	recvfrom()	is	said	to	“block”	(that	is,
sleep	there)	until	some	data	arrives.	Lots	of	functions	block.	accept()	blocks.	All	the	recv()	functions	block.	The	reason	they	can	do	this	is	because	they’re	allowed	to.	When	you	first	create	the	socket	descriptor	with	socket(),	the	kernel	sets	it	to	blocking.	If	you	don’t	want	a	socket	to	be	blocking,	you	have	to	make	a	call	to	fcntl():	#include	#include	.	.	.
sockfd	=	socket(PF_INET,	SOCK_STREAM,	0);	fcntl(sockfd,	F_SETFL,	O_NONBLOCK);	.	.	.	By	setting	a	socket	to	non-blocking,	you	can	effectively	“poll”	the	socket	for	information.	If	you	try	to	read	from	a	non-blocking	socket	and	there’s	no	data	there,	it’s	not	allowed	to	block—it	will	return	-1	and	errno	will	be	set	to	EAGAIN	or	EWOULDBLOCK.	(Wait
—it	can	return	EAGAIN	or	EWOULDBLOCK?	Which	do	you	check	for?	The	specification	doesn’t	actually	specify	which	your	system	will	return,	so	for	portability,	check	them	both.)	Generally	speaking,	however,	this	type	of	polling	is	a	bad	idea.	If	you	put	your	program	in	a	busy-wait	looking	for	data	on	the	socket,	you’ll	suck	up	CPU	time	like	it	was
going	out	of	style.	A	more	elegant	solution	for	checking	to	see	if	there’s	data	waiting	to	be	read	comes	in	the	following	section	on	poll().	poll()—Synchronous	I/O	Multiplexing	What	you	really	want	to	be	able	to	do	is	somehow	monitor	a	bunch	of	sockets	at	once	and	then	handle	the	ones	that	have	data	ready.	This	way	you	don’t	have	to	continously	poll
all	those	sockets	to	see	which	are	ready	to	read.	A	word	of	warning:	poll()	is	horribly	slow	when	it	comes	to	giant	numbers	of	connections.	In	those	circumstances,	you’ll	get	better	performance	out	of	an	event	library	such	as	libevent27	that	attempts	to	use	the	fastest	possible	method	availabile	on	your	system.	So	how	can	you	avoid	polling?	Not
slightly	ironically,	you	can	avoid	polling	by	using	the	poll()	system	call.	In	a	nutshell,	we’re	going	to	ask	the	operating	system	to	do	all	the	dirty	work	for	us,	and	just	let	us	know	when	some	data	is	ready	to	read	on	which	sockets.	In	the	meantime,	our	process	can	go	to	sleep,	saving	system	resources.	The	general	gameplan	is	to	keep	an	array	of	struct
pollfds	with	information	about	which	socket	descriptors	we	want	to	monitor,	and	what	kind	of	events	we	want	to	monitor	for.	The	OS	will	block	on	the	poll()	call	until	one	of	those	events	occurs	(e.g.	“socket	ready	to	read!”)	or	until	a	user-specified	timeout	occurs.	Usefully,	a	listen()ing	socket	will	return	“ready	to	read”	when	a	new	incoming	connection
is	ready	to	be	accept()ed.	That’s	enough	banter.	How	do	we	use	this?	#include	int	poll(struct	pollfd	fds[],	nfds_t	nfds,	int	timeout);	fds	is	our	array	of	information	(which	sockets	to	monitor	for	what),	nfds	is	the	count	of	elements	in	the	array,	and	timeout	is	a	timeout	in	milliseconds.	It	returns	the	number	of	elements	in	the	array	that	have	had	an	event
occur.	Let’s	have	a	look	at	that	struct:	struct	pollfd	{	int	fd;	//	the	socket	descriptor	short	events;	//	bitmap	of	events	we're	interested	in	short	revents;	//	when	poll()	returns,	bitmap	of	events	that	occurred	};	So	we’re	going	to	have	an	array	of	those,	and	we’ll	see	the	fd	field	for	each	element	to	a	socket	descriptor	we’re	interested	in	monitoring.	And
then	we’ll	set	the	events	field	to	indicate	the	type	of	events	we’re	interested	in.	The	events	field	is	the	bitwise-OR	of	the	following:	POLLIN	Alert	me	when	data	is	ready	to	recv()	on	this	socket.	POLLOUT	Alert	me	when	I	can	send()	data	to	this	socket	without	blocking.	Once	you	have	your	array	of	struct	pollfds	in	order,	then	you	can	pass	it	to	poll(),
also	passing	the	size	of	the	array,	as	well	as	a	timeout	value	in	milliseconds.	(You	can	specify	a	negative	timeout	to	wait	forever.)	After	poll()	returns,	you	can	check	the	revents	field	to	see	if	POLLIN	or	POLLOUT	is	set,	indicating	that	event	occurred.	(There’s	actually	more	that	you	can	do	with	the	poll()	call.	See	the	poll()	man	page,	below,	for	more
details.)	Here’s	an	example28	where	we’ll	wait	2.5	seconds	for	data	to	be	ready	to	read	from	standard	input,	i.e.	when	you	hit	RETURN:	#include	#include	int	main(void)	{	struct	pollfd	pfds[1];	//	More	if	you	want	to	monitor	more	pfds[0].fd	=	0;	//	Standard	input	pfds[0].events	=	POLLIN;	//	Tell	me	when	ready	to	read	//	If	you	needed	to	monitor	other
things,	as	well:	//pfds[1].fd	=	some_socket;	//	Some	socket	descriptor	//pfds[1].events	=	POLLIN;	//	Tell	me	when	ready	to	read	printf("Hit	RETURN	or	wait	2.5	seconds	for	timeout");	int	num_events	=	poll(pfds,	1,	2500);	//	2.5	second	timeout	if	(num_events	==	0)	{	printf("Poll	timed	out!");	}	else	{	int	pollin_happened	=	pfds[0].revents	&	POLLIN;	if
(pollin_happened)	{	printf("File	descriptor	%d	is	ready	to	read",	pfds[0].fd);	}	else	{	printf("Unexpected	event	occurred:	%d",	pfds[0].revents);	}	}	return	0;	}	Notice	again	that	poll()	returns	the	number	of	elements	in	the	pfds	array	for	which	events	have	occurred.	It	doesn’t	tell	you	which	elements	in	the	array	(you	still	have	to	scan	for	that),	but	it
does	tell	you	how	many	entries	have	a	non-zero	revents	field	(so	you	can	stop	scanning	after	you	find	that	many).	A	couple	questions	might	come	up	here:	how	to	add	new	file	descriptors	to	the	set	I	pass	to	poll()?	For	this,	simply	make	sure	you	have	enough	space	in	the	array	for	all	you	need,	or	realloc()	more	space	as	needed.	What	about	deleting
items	from	the	set?	For	this,	you	can	copy	the	last	element	in	the	array	over-top	the	one	you’re	deleting.	And	then	pass	in	one	fewer	as	the	count	to	poll().	Another	option	is	that	you	can	set	any	fd	field	to	a	negative	number	and	poll()	will	ignore	it.	How	can	we	put	it	all	together	into	a	chat	server	that	you	can	telnet	to?	What	we’ll	do	is	start	a	listener
socket,	and	add	it	to	the	set	of	file	descriptors	to	poll().	(It	will	show	ready-to-read	when	there’s	an	incoming	connection.)	Then	we’ll	add	new	connections	to	our	struct	pollfd	array.	And	we’ll	grow	it	dynamically	if	we	run	out	of	space.	When	a	connection	is	closed,	we’ll	remove	it	from	the	array.	And	when	a	connection	is	ready-to-read,	we’ll	read	the
data	from	it	and	send	that	data	to	all	the	other	connections	so	they	can	see	what	the	other	users	typed.	So	give	this	poll	server29	a	try.	Run	it	in	one	window,	then	telnet	localhost	9034	from	a	number	of	other	terminal	windows.	You	should	be	able	to	see	what	you	type	in	one	window	in	the	other	ones	(after	you	hit	RETURN).	Not	only	that,	but	if	you
hit	CTRL-]	and	type	quit	to	exit	telnet,	the	server	should	detect	the	disconnection	and	remove	you	from	the	array	of	file	descriptors.	/*	**	pollserver.c	--	a	cheezy	multiperson	chat	server	*/	#include	#include	#include	#include	#include	#include	#include	#include	#include	#include	#define	PORT	"9034"	//	Port	we're	listening	on	//	Get	sockaddr,	IPv4
or	IPv6:	void	*get_in_addr(struct	sockaddr	*sa)	{	if	(sa->sa_family	==	AF_INET)	{	return	&(((struct	sockaddr_in*)sa)->sin_addr);	}	return	&(((struct	sockaddr_in6*)sa)->sin6_addr);	}	//	Return	a	listening	socket	int	get_listener_socket(void)	{	int	listener;	//	Listening	socket	descriptor	int	yes=1;	//	For	setsockopt()	SO_REUSEADDR,	below	int	rv;	struct
addrinfo	hints,	*ai,	*p;	//	Get	us	a	socket	and	bind	it	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	if	((rv	=	getaddrinfo(NULL,	PORT,	&hints,	&ai))	!=	0)	{	fprintf(stderr,	"selectserver:	%s",	gai_strerror(rv));	exit(1);	}	for(p	=	ai;	p	!=	NULL;	p	=	p->ai_next)	{	listener	=
socket(p->ai_family,	p->ai_socktype,	p->ai_protocol);	if	(listener	<	0)	{	continue;	}	//	Lose	the	pesky	"address	already	in	use"	error	message	setsockopt(listener,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int));	if	(bind(listener,	p->ai_addr,	p->ai_addrlen)	<	0)	{	close(listener);	continue;	}	break;	}	freeaddrinfo(ai);	//	All	done	with	this	//	If	we	got
here,	it	means	we	didn't	get	bound	if	(p	==	NULL)	{	return	-1;	}	//	Listen	if	(listen(listener,	10)	==	-1)	{	return	-1;	}	return	listener;	}	//	Add	a	new	file	descriptor	to	the	set	void	add_to_pfds(struct	pollfd	*pfds[],	int	newfd,	int	*fd_count,	int	*fd_size)	{	//	If	we	don't	have	room,	add	more	space	in	the	pfds	array	if	(*fd_count	==	*fd_size)	{	*fd_size	*=	2;	//
Double	it	*pfds	=	realloc(*pfds,	sizeof(**pfds)	*	(*fd_size));	}	(*pfds)[*fd_count].fd	=	newfd;	(*pfds)[*fd_count].events	=	POLLIN;	//	Check	ready-to-read	(*fd_count)++;	}	//	Remove	an	index	from	the	set	void	del_from_pfds(struct	pollfd	pfds[],	int	i,	int	*fd_count)	{	//	Copy	the	one	from	the	end	over	this	one	pfds[i]	=	pfds[*fd_count-1];	(*fd_count)--;	}	//
Main	int	main(void)	{	int	listener;	//	Listening	socket	descriptor	int	newfd;	//	Newly	accept()ed	socket	descriptor	struct	sockaddr_storage	remoteaddr;	//	Client	address	socklen_t	addrlen;	char	buf[256];	//	Buffer	for	client	data	char	remoteIP[INET6_ADDRSTRLEN];	//	Start	off	with	room	for	5	connections	//	(We'll	realloc	as	necessary)	int	fd_count	=	0;
int	fd_size	=	5;	struct	pollfd	*pfds	=	malloc(sizeof	*pfds	*	fd_size);	//	Set	up	and	get	a	listening	socket	listener	=	get_listener_socket();	if	(listener	==	-1)	{	fprintf(stderr,	"error	getting	listening	socket");	exit(1);	}	//	Add	the	listener	to	set	pfds[0].fd	=	listener;	pfds[0].events	=	POLLIN;	//	Report	ready	to	read	on	incoming	connection	fd_count	=	1;	//	For
the	listener	//	Main	loop	for(;;)	{	int	poll_count	=	poll(pfds,	fd_count,	-1);	if	(poll_count	==	-1)	{	perror("poll");	exit(1);	}	//	Run	through	the	existing	connections	looking	for	data	to	read	for(int	i	=	0;	i	<	fd_count;	i++)	{	//	Check	if	someone's	ready	to	read	if	(pfds[i].revents	&	POLLIN)	{	//	We	got	one!!	if	(pfds[i].fd	==	listener)	{	//	If	listener	is	ready	to
read,	handle	new	connection	addrlen	=	sizeof	remoteaddr;	newfd	=	accept(listener,	(struct	sockaddr	*)&remoteaddr,	&addrlen);	if	(newfd	==	-1)	{	perror("accept");	}	else	{	add_to_pfds(&pfds,	newfd,	&fd_count,	&fd_size);	printf("pollserver:	new	connection	from	%s	on	"	"socket	%d",	inet_ntop(remoteaddr.ss_family,	get_in_addr((struct
sockaddr*)&remoteaddr),	remoteIP,	INET6_ADDRSTRLEN),	newfd);	}	}	else	{	//	If	not	the	listener,	we're	just	a	regular	client	int	nbytes	=	recv(pfds[i].fd,	buf,	sizeof	buf,	0);	int	sender_fd	=	pfds[i].fd;	if	(nbytes	sa_family	==	AF_INET)	{	return	&(((struct	sockaddr_in*)sa)->sin_addr);	}	return	&(((struct	sockaddr_in6*)sa)->sin6_addr);	}	int	main(void)	{
fd_set	master;	//	master	file	descriptor	list	fd_set	read_fds;	//	temp	file	descriptor	list	for	select()	int	fdmax;	//	maximum	file	descriptor	number	int	listener;	//	listening	socket	descriptor	int	newfd;	//	newly	accept()ed	socket	descriptor	struct	sockaddr_storage	remoteaddr;	//	client	address	socklen_t	addrlen;	char	buf[256];	//	buffer	for	client	data	int
nbytes;	char	remoteIP[INET6_ADDRSTRLEN];	int	yes=1;	//	for	setsockopt()	SO_REUSEADDR,	below	int	i,	j,	rv;	struct	addrinfo	hints,	*ai,	*p;	FD_ZERO(&master);	//	clear	the	master	and	temp	sets	FD_ZERO(&read_fds);	//	get	us	a	socket	and	bind	it	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	hints.ai_socktype	=	SOCK_STREAM;
hints.ai_flags	=	AI_PASSIVE;	if	((rv	=	getaddrinfo(NULL,	PORT,	&hints,	&ai))	!=	0)	{	fprintf(stderr,	"selectserver:	%s",	gai_strerror(rv));	exit(1);	}	for(p	=	ai;	p	!=	NULL;	p	=	p->ai_next)	{	listener	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol);	if	(listener	<	0)	{	continue;	}	//	lose	the	pesky	"address	already	in	use"	error	message
setsockopt(listener,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int));	if	(bind(listener,	p->ai_addr,	p->ai_addrlen)	<	0)	{	close(listener);	continue;	}	break;	}	//	if	we	got	here,	it	means	we	didn't	get	bound	if	(p	==	NULL)	{	fprintf(stderr,	"selectserver:	failed	to	bind");	exit(2);	}	freeaddrinfo(ai);	//	all	done	with	this	//	listen	if	(listen(listener,	10)	==	-1)
{	perror("listen");	exit(3);	}	//	add	the	listener	to	the	master	set	FD_SET(listener,	&master);	//	keep	track	of	the	biggest	file	descriptor	fdmax	=	listener;	//	so	far,	it's	this	one	//	main	loop	for(;;)	{	read_fds	=	master;	//	copy	it	if	(select(fdmax+1,	&read_fds,	NULL,	NULL,	NULL)	==	-1)	{	perror("select");	exit(4);	}	//	run	through	the	existing	connections
looking	for	data	to	read	for(i	=	0;	i	fdmax)	{	//	keep	track	of	the	max	fdmax	=	newfd;	}	printf("selectserver:	new	connection	from	%s	on	"	"socket	%d",	inet_ntop(remoteaddr.ss_family,	get_in_addr((struct	sockaddr*)&remoteaddr),	remoteIP,	INET6_ADDRSTRLEN),	newfd);	}	}	else	{	//	handle	data	from	a	client	if	((nbytes	=	recv(i,	buf,	sizeof	buf,	0))
/tmp/client.out")	close()	the	connection	Meanwhile,	the	server	is	handling	the	data	and	executing	it:	accept()	the	connection	from	the	client	recv(str)	the	command	string	close()	the	connection	system(str)	to	run	the	command	Beware!	Having	the	server	execute	what	the	client	says	is	like	giving	remote	shell	access	and	people	can	do	things	to	your

account	when	they	connect	to	the	server.	For	instance,	in	the	above	example,	what	if	the	client	sends	“rm	-rf	~”?	It	deletes	everything	in	your	account,	that’s	what!	So	you	get	wise,	and	you	prevent	the	client	from	using	any	except	for	a	couple	utilities	that	you	know	are	safe,	like	the	foobar	utility:	if	(!strncmp(str,	"foobar",	6))	{	sprintf(sysstr,	"%s	>
/tmp/server.out",	str);	system(sysstr);	}	But	you’re	still	unsafe,	unfortunately:	what	if	the	client	enters	“foobar;	rm	-rf	~”?	The	safest	thing	to	do	is	to	write	a	little	routine	that	puts	an	escape	(“\”)	character	in	front	of	all	non-alphanumeric	characters	(including	spaces,	if	appropriate)	in	the	arguments	for	the	command.	As	you	can	see,	security	is	a
pretty	big	issue	when	the	server	starts	executing	things	the	client	sends.	I’m	sending	a	slew	of	data,	but	when	I	recv(),	it	only	receives	536	bytes	or	1460	bytes	at	a	time.	But	if	I	run	it	on	my	local	machine,	it	receives	all	the	data	at	the	same	time.	What’s	going	on?	You’re	hitting	the	MTU—the	maximum	size	the	physical	medium	can	handle.	On	the
local	machine,	you’re	using	the	loopback	device	which	can	handle	8K	or	more	no	problem.	But	on	Ethernet,	which	can	only	handle	1500	bytes	with	a	header,	you	hit	that	limit.	Over	a	modem,	with	576	MTU	(again,	with	header),	you	hit	the	even	lower	limit.	You	have	to	make	sure	all	the	data	is	being	sent,	first	of	all.	(See	the	sendall()	function
implementation	for	details.)	Once	you’re	sure	of	that,	then	you	need	to	call	recv()	in	a	loop	until	all	your	data	is	read.	Read	the	section	Son	of	Data	Encapsulation	for	details	on	receiving	complete	packets	of	data	using	multiple	calls	to	recv().	I’m	on	a	Windows	box	and	I	don’t	have	the	fork()	system	call	or	any	kind	of	struct	sigaction.	What	to	do?	If
they’re	anywhere,	they’ll	be	in	POSIX	libraries	that	may	have	shipped	with	your	compiler.	Since	I	don’t	have	a	Windows	box,	I	really	can’t	tell	you	the	answer,	but	I	seem	to	remember	that	Microsoft	has	a	POSIX	compatibility	layer	and	that’s	where	fork()	would	be.	(And	maybe	even	sigaction.)	Search	the	help	that	came	with	VC++	for	“fork”	or
“POSIX”	and	see	if	it	gives	you	any	clues.	If	that	doesn’t	work	at	all,	ditch	the	fork()/sigaction	stuff	and	replace	it	with	the	Win32	equivalent:	CreateProcess().	I	don’t	know	how	to	use	CreateProcess()—it	takes	a	bazillion	arguments,	but	it	should	be	covered	in	the	docs	that	came	with	VC++.	I’m	behind	a	firewall—how	do	I	let	people	outside	the	firewall
know	my	IP	address	so	they	can	connect	to	my	machine?	Unfortunately,	the	purpose	of	a	firewall	is	to	prevent	people	outside	the	firewall	from	connecting	to	machines	inside	the	firewall,	so	allowing	them	to	do	so	is	basically	considered	a	breach	of	security.	This	isn’t	to	say	that	all	is	lost.	For	one	thing,	you	can	still	often	connect()	through	the	firewall
if	it’s	doing	some	kind	of	masquerading	or	NAT	or	something	like	that.	Just	design	your	programs	so	that	you’re	always	the	one	initiating	the	connection,	and	you’ll	be	fine.	If	that’s	not	satisfactory,	you	can	ask	your	sysadmins	to	poke	a	hole	in	the	firewall	so	that	people	can	connect	to	you.	The	firewall	can	forward	to	you	either	through	it’s	NAT
software,	or	through	a	proxy	or	something	like	that.	Be	aware	that	a	hole	in	the	firewall	is	nothing	to	be	taken	lightly.	You	have	to	make	sure	you	don’t	give	bad	people	access	to	the	internal	network;	if	you’re	a	beginner,	it’s	a	lot	harder	to	make	software	secure	than	you	might	imagine.	Don’t	make	your	sysadmin	mad	at	me.	;-)	How	do	I	write	a	packet
sniffer?	How	do	I	put	my	Ethernet	interface	into	promiscuous	mode?	For	those	not	in	the	know,	when	a	network	card	is	in	“promiscuous	mode”,	it	will	forward	ALL	packets	to	the	operating	system,	not	just	those	that	were	addressed	to	this	particular	machine.	(We’re	talking	Ethernet-layer	addresses	here,	not	IP	addresses–but	since	ethernet	is	lower-
layer	than	IP,	all	IP	addresses	are	effectively	forwarded	as	well.	See	the	section	Low	Level	Nonsense	and	Network	Theory	for	more	info.)	This	is	the	basis	for	how	a	packet	sniffer	works.	It	puts	the	interface	into	promiscuous	mode,	then	the	OS	gets	every	single	packet	that	goes	by	on	the	wire.	You’ll	have	a	socket	of	some	type	that	you	can	read	this
data	from.	Unfortunately,	the	answer	to	the	question	varies	depending	on	the	platform,	but	if	you	Google	for,	for	instance,	“windows	promiscuous	ioctl”	you’ll	probably	get	somewhere.	For	Linux,	there’s	what	looks	like	a	useful	Stack	Overflow	thread46,	as	well.	How	can	I	set	a	custom	timeout	value	for	a	TCP	or	UDP	socket?	It	depends	on	your	system.
You	might	search	the	net	for	SO_RCVTIMEO	and	SO_SNDTIMEO	(for	use	with	setsockopt())	to	see	if	your	system	supports	such	functionality.	The	Linux	man	page	suggests	using	alarm()	or	setitimer()	as	a	substitute.	How	can	I	tell	which	ports	are	available	to	use?	Is	there	a	list	of	“official”	port	numbers?	Usually	this	isn’t	an	issue.	If	you’re	writing,
say,	a	web	server,	then	it’s	a	good	idea	to	use	the	well-known	port	80	for	your	software.	If	you’re	writing	just	your	own	specialized	server,	then	choose	a	port	at	random	(but	greater	than	1023)	and	give	it	a	try.	If	the	port	is	already	in	use,	you’ll	get	an	“Address	already	in	use”	error	when	you	try	to	bind().	Choose	another	port.	(It’s	a	good	idea	to	allow
the	user	of	your	software	to	specify	an	alternate	port	either	with	a	config	file	or	a	command	line	switch.)	There	is	a	list	of	official	port	numbers47	maintained	by	the	Internet	Assigned	Numbers	Authority	(IANA).	Just	because	something	(over	1023)	is	in	that	list	doesn’t	mean	you	can’t	use	the	port.	For	instance,	Id	Software’s	DOOM	uses	the	same	port
as	“mdqs”,	whatever	that	is.	All	that	matters	is	that	no	one	else	on	the	same	machine	is	using	that	port	when	you	want	to	use	it.	Man	Pages	In	the	Unix	world,	there	are	a	lot	of	manuals.	They	have	little	sections	that	describe	individual	functions	that	you	have	at	your	disposal.	Of	course,	manual	would	be	too	much	of	a	thing	to	type.	I	mean,	no	one	in
the	Unix	world,	including	myself,	likes	to	type	that	much.	Indeed	I	could	go	on	and	on	at	great	length	about	how	much	I	prefer	to	be	terse	but	instead	I	shall	be	brief	and	not	bore	you	with	long-winded	diatribes	about	how	utterly	amazingly	brief	I	prefer	to	be	in	virtually	all	circumstances	in	their	entirety.	[Applause]	Thank	you.	What	I	am	getting	at	is
that	these	pages	are	called	“man	pages”	in	the	Unix	world,	and	I	have	included	my	own	personal	truncated	variant	here	for	your	reading	enjoyment.	The	thing	is,	many	of	these	functions	are	way	more	general	purpose	than	I’m	letting	on,	but	I’m	only	going	to	present	the	parts	that	are	relevant	for	Internet	Sockets	Programming.	But	wait!	That’s	not	all
that’s	wrong	with	my	man	pages:	They	are	incomplete	and	only	show	the	basics	from	the	guide.	There	are	many	more	man	pages	than	this	in	the	real	world.	They	are	different	than	the	ones	on	your	system.	The	header	files	might	be	different	for	certain	functions	on	your	system.	The	function	parameters	might	be	different	for	certain	functions	on	your
system.	If	you	want	the	real	information,	check	your	local	Unix	man	pages	by	typing	man	whatever,	where	“whatever”	is	something	that	you’re	incredibly	interested	in,	such	as	“accept”.	(I’m	sure	Microsoft	Visual	Studio	has	something	similar	in	their	help	section.	But	“man”	is	better	because	it	is	one	byte	more	concise	than	“help”.	Unix	wins	again!)
So,	if	these	are	so	flawed,	why	even	include	them	at	all	in	the	Guide?	Well,	there	are	a	few	reasons,	but	the	best	are	that	(a)	these	versions	are	geared	specifically	toward	network	programming	and	are	easier	to	digest	than	the	real	ones,	and	(b)	these	versions	contain	examples!	Oh!	And	speaking	of	the	examples,	I	don’t	tend	to	put	in	all	the	error
checking	because	it	really	increases	the	length	of	the	code.	But	you	should	absolutely	do	error	checking	pretty	much	any	time	you	make	any	of	the	system	calls	unless	you’re	totally	100%	sure	it’s	not	going	to	fail,	and	you	should	probably	do	it	even	then!	accept()	Accept	an	incoming	connection	on	a	listening	socket	Synopsis	#include	#include	int
accept(int	s,	struct	sockaddr	*addr,	socklen_t	*addrlen);	Description	Once	you’ve	gone	through	the	trouble	of	getting	a	SOCK_STREAM	socket	and	setting	it	up	for	incoming	connections	with	listen(),	then	you	call	accept()	to	actually	get	yourself	a	new	socket	descriptor	to	use	for	subsequent	communication	with	the	newly	connected	client.	The	old
socket	that	you	are	using	for	listening	is	still	there,	and	will	be	used	for	further	accept()	calls	as	they	come	in.	s	The	listen()ing	socket	descriptor.	addr	This	is	filled	in	with	the	address	of	the	site	that’s	connecting	to	you.	addrlen	This	is	filled	in	with	the	sizeof()	the	structure	returned	in	the	addr	parameter.	You	can	safely	ignore	it	if	you	assume	you’re
getting	a	struct	sockaddr_in	back,	which	you	know	you	are,	because	that’s	the	type	you	passed	in	for	addr.	accept()	will	normally	block,	and	you	can	use	select()	to	peek	on	the	listening	socket	descriptor	ahead	of	time	to	see	if	it’s	“ready	to	read”.	If	so,	then	there’s	a	new	connection	waiting	to	be	accept()ed!	Yay!	Alternatively,	you	could	set	the
O_NONBLOCK	flag	on	the	listening	socket	using	fcntl(),	and	then	it	will	never	block,	choosing	instead	to	return	-1	with	errno	set	to	EWOULDBLOCK.	The	socket	descriptor	returned	by	accept()	is	a	bona	fide	socket	descriptor,	open	and	connected	to	the	remote	host.	You	have	to	close()	it	when	you’re	done	with	it.	Return	Value	accept()	returns	the
newly	connected	socket	descriptor,	or	-1	on	error,	with	errno	set	appropriately.	Example	struct	sockaddr_storage	their_addr;	socklen_t	addr_size;	struct	addrinfo	hints,	*res;	int	sockfd,	new_fd;	//	first,	load	up	address	structs	with	getaddrinfo():	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever
hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	//	fill	in	my	IP	for	me	getaddrinfo(NULL,	MYPORT,	&hints,	&res);	//	make	a	socket,	bind	it,	and	listen	on	it:	sockfd	=	socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	bind(sockfd,	res->ai_addr,	res->ai_addrlen);	listen(sockfd,	BACKLOG);	//	now	accept	an	incoming	connection:
addr_size	=	sizeof	their_addr;	new_fd	=	accept(sockfd,	(struct	sockaddr	*)&their_addr,	&addr_size);	//	ready	to	communicate	on	socket	descriptor	new_fd!	See	Also	socket(),	getaddrinfo(),	listen(),	struct	sockaddr_in	bind()	Associate	a	socket	with	an	IP	address	and	port	number	Synopsis	#include	#include	int	bind(int	sockfd,	struct	sockaddr	*my_addr,
socklen_t	addrlen);	Description	When	a	remote	machine	wants	to	connect	to	your	server	program,	it	needs	two	pieces	of	information:	the	IP	address	and	the	port	number.	The	bind()	call	allows	you	to	do	just	that.	First,	you	call	getaddrinfo()	to	load	up	a	struct	sockaddr	with	the	destination	address	and	port	information.	Then	you	call	socket()	to	get	a
socket	descriptor,	and	then	you	pass	the	socket	and	address	into	bind(),	and	the	IP	address	and	port	are	magically	(using	actual	magic)	bound	to	the	socket!	If	you	don’t	know	your	IP	address,	or	you	know	you	only	have	one	IP	address	on	the	machine,	or	you	don’t	care	which	of	the	machine’s	IP	addresses	is	used,	you	can	simply	pass	the	AI_PASSIVE
flag	in	the	hints	parameter	to	getaddrinfo().	What	this	does	is	fill	in	the	IP	address	part	of	the	struct	sockaddr	with	a	special	value	that	tells	bind()	that	it	should	automatically	fill	in	this	host’s	IP	address.	What	what?	What	special	value	is	loaded	into	the	struct	sockaddr’s	IP	address	to	cause	it	to	auto-fill	the	address	with	the	current	host?	I’ll	tell	you,
but	keep	in	mind	this	is	only	if	you’re	filling	out	the	struct	sockaddr	by	hand;	if	not,	use	the	results	from	getaddrinfo(),	as	per	above.	In	IPv4,	the	sin_addr.s_addr	field	of	the	struct	sockaddr_in	structure	is	set	to	INADDR_ANY.	In	IPv6,	the	sin6_addr	field	of	the	struct	sockaddr_in6	structure	is	assigned	into	from	the	global	variable	in6addr_any.	Or,	if
you’re	declaring	a	new	struct	in6_addr,	you	can	initialize	it	to	IN6ADDR_ANY_INIT.	Lastly,	the	addrlen	parameter	should	be	set	to	sizeof	my_addr.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	//	modern	way	of	doing	things	with	getaddrinfo()	struct	addrinfo	hints,	*res;	int	sockfd;	//	first,	load	up
address	structs	with	getaddrinfo():	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever	hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	//	fill	in	my	IP	for	me	getaddrinfo(NULL,	"3490",	&hints,	&res);	//	make	a	socket:	//	(you	should	actually	walk	the	"res"	linked	list	and	error-check!)	sockfd	=
socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	//	bind	it	to	the	port	we	passed	in	to	getaddrinfo():	bind(sockfd,	res->ai_addr,	res->ai_addrlen);	//	example	of	packing	a	struct	by	hand,	IPv4	struct	sockaddr_in	myaddr;	int	s;	myaddr.sin_family	=	AF_INET;	myaddr.sin_port	=	htons(3490);	//	you	can	specify	an	IP	address:	inet_pton(AF_INET,
"63.161.169.137",	&(myaddr.sin_addr));	//	or	you	can	let	it	automatically	select	one:	myaddr.sin_addr.s_addr	=	INADDR_ANY;	s	=	socket(PF_INET,	SOCK_STREAM,	0);	bind(s,	(struct	sockaddr*)&myaddr,	sizeof	myaddr);	See	Also	getaddrinfo(),	socket(),	struct	sockaddr_in,	struct	in_addr	connect()	Connect	a	socket	to	a	server	Synopsis	#include
#include	int	connect(int	sockfd,	const	struct	sockaddr	*serv_addr,	socklen_t	addrlen);	Description	Once	you’ve	built	a	socket	descriptor	with	the	socket()	call,	you	can	connect()	that	socket	to	a	remote	server	using	the	well-named	connect()	system	call.	All	you	need	to	do	is	pass	it	the	socket	descriptor	and	the	address	of	the	server	you’re	interested	in
getting	to	know	better.	(Oh,	and	the	length	of	the	address,	which	is	commonly	passed	to	functions	like	this.)	Usually	this	information	comes	along	as	the	result	of	a	call	to	getaddrinfo(),	but	you	can	fill	out	your	own	struct	sockaddr	if	you	want	to.	If	you	haven’t	yet	called	bind()	on	the	socket	descriptor,	it	is	automatically	bound	to	your	IP	address	and	a
random	local	port.	This	is	usually	just	fine	with	you	if	you’re	not	a	server,	since	you	really	don’t	care	what	your	local	port	is;	you	only	care	what	the	remote	port	is	so	you	can	put	it	in	the	serv_addr	parameter.	You	can	call	bind()	if	you	really	want	your	client	socket	to	be	on	a	specific	IP	address	and	port,	but	this	is	pretty	rare.	Once	the	socket	is
connect()ed,	you’re	free	to	send()	and	recv()	data	on	it	to	your	heart’s	content.	Special	note:	if	you	connect()	a	SOCK_DGRAM	UDP	socket	to	a	remote	host,	you	can	use	send()	and	recv()	as	well	as	sendto()	and	recvfrom().	If	you	want.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	//	connect	to
www.example.com	port	80	(http)	struct	addrinfo	hints,	*res;	int	sockfd;	//	first,	load	up	address	structs	with	getaddrinfo():	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever	hints.ai_socktype	=	SOCK_STREAM;	//	we	could	put	"80"	instead	on	"http"	on	the	next	line:	getaddrinfo("www.example.com",	"http",
&hints,	&res);	//	make	a	socket:	sockfd	=	socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	//	connect	it	to	the	address	and	port	we	passed	in	to	getaddrinfo():	connect(sockfd,	res->ai_addr,	res->ai_addrlen);	See	Also	socket(),	bind()	close()	Close	a	socket	descriptor	Synopsis	#include	int	close(int	s);	Description	After	you’ve	finished	using	the
socket	for	whatever	demented	scheme	you	have	concocted	and	you	don’t	want	to	send()	or	recv()	or,	indeed,	do	anything	else	at	all	with	the	socket,	you	can	close()	it,	and	it’ll	be	freed	up,	never	to	be	used	again.	The	remote	side	can	tell	if	this	happens	one	of	two	ways.	One:	if	the	remote	side	calls	recv(),	it	will	return	0.	Two:	if	the	remote	side	calls
send(),	it’ll	receive	a	signal	SIGPIPE	and	send()	will	return	-1	and	errno	will	be	set	to	EPIPE.	Windows	users:	the	function	you	need	to	use	is	called	closesocket(),	not	close().	If	you	try	to	use	close()	on	a	socket	descriptor,	it’s	possible	Windows	will	get	angry…	And	you	wouldn’t	like	it	when	it’s	angry.	Return	Value	Returns	zero	on	success,	or	-1	on	error
(and	errno	will	be	set	accordingly).	Example	s	=	socket(PF_INET,	SOCK_DGRAM,	0);	.	.	.	//	a	whole	lotta	stuff...*BRRRONNNN!*	.	.	.	close(s);	//	not	much	to	it,	really.	See	Also	socket(),	shutdown()	Get	information	about	a	host	name	and/or	service	and	load	up	a	struct	sockaddr	with	the	result.	Synopsis	#include	#include	#include	int	getaddrinfo(const
char	*nodename,	const	char	*servname,	const	struct	addrinfo	*hints,	struct	addrinfo	**res);	void	freeaddrinfo(struct	addrinfo	*ai);	const	char	*gai_strerror(int	ecode);	struct	addrinfo	{	int	ai_flags;	//	AI_PASSIVE,	AI_CANONNAME,	...	int	ai_family;	//	AF_xxx	int	ai_socktype;	//	SOCK_xxx	int	ai_protocol;	//	0	(auto)	or	IPPROTO_TCP,	IPPROTO_UDP
socklen_t	ai_addrlen;	//	length	of	ai_addr	char	*ai_canonname;	//	canonical	name	for	nodename	struct	sockaddr	*ai_addr;	//	binary	address	struct	addrinfo	*ai_next;	//	next	structure	in	linked	list	};	Description	getaddrinfo()	is	an	excellent	function	that	will	return	information	on	a	particular	host	name	(such	as	its	IP	address)	and	load	up	a	struct
sockaddr	for	you,	taking	care	of	the	gritty	details	(like	if	it’s	IPv4	or	IPv6).	It	replaces	the	old	functions	gethostbyname()	and	getservbyname().The	description,	below,	contains	a	lot	of	information	that	might	be	a	little	daunting,	but	actual	usage	is	pretty	simple.	It	might	be	worth	it	to	check	out	the	examples	first.	The	host	name	that	you’re	interested	in
goes	in	the	nodename	parameter.	The	address	can	be	either	a	host	name,	like	“www.example.com”,	or	an	IPv4	or	IPv6	address	(passed	as	a	string).	This	parameter	can	also	be	NULL	if	you’re	using	the	AI_PASSIVE	flag	(see	below).	The	servname	parameter	is	basically	the	port	number.	It	can	be	a	port	number	(passed	as	a	string,	like	“80”),	or	it	can	be
a	service	name,	like	“http”	or	“tftp”	or	“smtp”	or	“pop”,	etc.	Well-known	service	names	can	be	found	in	the	IANA	Port	List48	or	in	your	/etc/services	file.	Lastly,	for	input	parameters,	we	have	hints.	This	is	really	where	you	get	to	define	what	the	getaddrinfo()	function	is	going	to	do.	Zero	the	whole	structure	before	use	with	memset().	Let’s	take	a	look
at	the	fields	you	need	to	set	up	before	use.	The	ai_flags	can	be	set	to	a	variety	of	things,	but	here	are	a	couple	important	ones.	(Multiple	flags	can	be	specified	by	bitwise-ORing	them	together	with	the	|	operator).	Check	your	man	page	for	the	complete	list	of	flags.	AI_CANONNAME	causes	the	ai_canonname	of	the	result	to	the	filled	out	with	the	host’s
canonical	(real)	name.	AI_PASSIVE	causes	the	result’s	IP	address	to	be	filled	out	with	INADDR_ANY	(IPv4)	or	in6addr_any	(IPv6);	this	causes	a	subsequent	call	to	bind()	to	auto-fill	the	IP	address	of	the	struct	sockaddr	with	the	address	of	the	current	host.	That’s	excellent	for	setting	up	a	server	when	you	don’t	want	to	hardcode	the	address.	If	you	do
use	the	AI_PASSIVE,	flag,	then	you	can	pass	NULL	in	the	nodename	(since	bind()	will	fill	it	in	for	you	later).	Continuing	on	with	the	input	paramters,	you’ll	likely	want	to	set	ai_family	to	AF_UNSPEC	which	tells	getaddrinfo()	to	look	for	both	IPv4	and	IPv6	addresses.	You	can	also	restrict	yourself	to	one	or	the	other	with	AF_INET	or	AF_INET6.	Next,	the
socktype	field	should	be	set	to	SOCK_STREAM	or	SOCK_DGRAM,	depending	on	which	type	of	socket	you	want.	Finally,	just	leave	ai_protocol	at	0	to	automatically	choose	your	protocol	type.	Now,	after	you	get	all	that	stuff	in	there,	you	can	finally	make	the	call	to	getaddrinfo()!	Of	course,	this	is	where	the	fun	begins.	The	res	will	now	point	to	a	linked
list	of	struct	addrinfos,	and	you	can	go	through	this	list	to	get	all	the	addresses	that	match	what	you	passed	in	with	the	hints.	Now,	it’s	possible	to	get	some	addresses	that	don’t	work	for	one	reason	or	another,	so	what	the	Linux	man	page	does	is	loops	through	the	list	doing	a	call	to	socket()	and	connect()	(or	bind()	if	you’re	setting	up	a	server	with	the
AI_PASSIVE	flag)	until	it	succeeds.	Finally,	when	you’re	done	with	the	linked	list,	you	need	to	call	freeaddrinfo()	to	free	up	the	memory	(or	it	will	be	leaked,	and	Some	People	will	get	upset).	Return	Value	Returns	zero	on	success,	or	nonzero	on	error.	If	it	returns	nonzero,	you	can	use	the	function	gai_strerror()	to	get	a	printable	version	of	the	error
code	in	the	return	value.	Example	//	code	for	a	client	connecting	to	a	server	//	namely	a	stream	socket	to	www.example.com	on	port	80	(http)	//	either	IPv4	or	IPv6	int	sockfd;	struct	addrinfo	hints,	*servinfo,	*p;	int	rv;	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	AF_INET6	to	force	IPv6	hints.ai_socktype	=	SOCK_STREAM;	if
((rv	=	getaddrinfo("www.example.com",	"http",	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",	gai_strerror(rv));	exit(1);	}	//	loop	through	all	the	results	and	connect	to	the	first	we	can	for(p	=	servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("socket");	continue;	}	if
(connect(sockfd,	p->ai_addr,	p->ai_addrlen)	==	-1)	{	perror("connect");	close(sockfd);	continue;	}	break;	//	if	we	get	here,	we	must	have	connected	successfully	}	if	(p	==	NULL)	{	//	looped	off	the	end	of	the	list	with	no	connection	fprintf(stderr,	"failed	to	connect");	exit(2);	}	freeaddrinfo(servinfo);	//	all	done	with	this	structure	//	code	for	a	server
waiting	for	connections	//	namely	a	stream	socket	on	port	3490,	on	this	host's	IP	//	either	IPv4	or	IPv6.	int	sockfd;	struct	addrinfo	hints,	*servinfo,	*p;	int	rv;	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	AF_INET6	to	force	IPv6	hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	//	use	my	IP	address	if	((rv	=
getaddrinfo(NULL,	"3490",	&hints,	&servinfo))	!=	0)	{	fprintf(stderr,	"getaddrinfo:	%s",	gai_strerror(rv));	exit(1);	}	//	loop	through	all	the	results	and	bind	to	the	first	we	can	for(p	=	servinfo;	p	!=	NULL;	p	=	p->ai_next)	{	if	((sockfd	=	socket(p->ai_family,	p->ai_socktype,	p->ai_protocol))	==	-1)	{	perror("socket");	continue;	}	if	(bind(sockfd,	p-
>ai_addr,	p->ai_addrlen)	==	-1)	{	close(sockfd);	perror("bind");	continue;	}	break;	//	if	we	get	here,	we	must	have	connected	successfully	}	if	(p	==	NULL)	{	//	looped	off	the	end	of	the	list	with	no	successful	bind	fprintf(stderr,	"failed	to	bind	socket");	exit(2);	}	freeaddrinfo(servinfo);	//	all	done	with	this	structure	See	Also	gethostbyname(),
getnameinfo()	gethostname()	Returns	the	name	of	the	system	Synopsis	#include	int	gethostname(char	*name,	size_t	len);	Description	Your	system	has	a	name.	They	all	do.	This	is	a	slightly	more	Unixy	thing	than	the	rest	of	the	networky	stuff	we’ve	been	talking	about,	but	it	still	has	its	uses.	For	instance,	you	can	get	your	host	name,	and	then	call
gethostbyname()	to	find	out	your	IP	address.	The	parameter	name	should	point	to	a	buffer	that	will	hold	the	host	name,	and	len	is	the	size	of	that	buffer	in	bytes.	gethostname()	won’t	overwrite	the	end	of	the	buffer	(it	might	return	an	error,	or	it	might	just	stop	writing),	and	it	will	NUL-terminate	the	string	if	there’s	room	for	it	in	the	buffer.	Return
Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	char	hostname[128];	gethostname(hostname,	sizeof	hostname);	printf("My	hostname:	%s",	hostname);	See	Also	gethostbyname()	gethostbyname(),	gethostbyaddr()	Get	an	IP	address	for	a	hostname,	or	vice-versa	Synopsis	#include	#include	struct	hostent
*gethostbyname(const	char	*name);	//	DEPRECATED!	struct	hostent	*gethostbyaddr(const	char	*addr,	int	len,	int	type);	Description	PLEASE	NOTE:	these	two	functions	are	superseded	by	getaddrinfo()	and	getnameinfo()!	In	particular,	gethostbyname()	doesn’t	work	well	with	IPv6.	These	functions	map	back	and	forth	between	host	names	and	IP
addresses.	For	instance,	if	you	have	“www.example.com”,	you	can	use	gethostbyname()	to	get	its	IP	address	and	store	it	in	a	struct	in_addr.	Conversely,	if	you	have	a	struct	in_addr	or	a	struct	in6_addr,	you	can	use	gethostbyaddr()	to	get	the	hostname	back.	gethostbyaddr()	is	IPv6	compatible,	but	you	should	use	the	newer	shinier	getnameinfo()
instead.	(If	you	have	a	string	containing	an	IP	address	in	dots-and-numbers	format	that	you	want	to	look	up	the	hostname	of,	you’d	be	better	off	using	getaddrinfo()	with	the	AI_CANONNAME	flag.)	gethostbyname()	takes	a	string	like	“www.yahoo.com”,	and	returns	a	struct	hostent	which	contains	tons	of	information,	including	the	IP	address.	(Other
information	is	the	official	host	name,	a	list	of	aliases,	the	address	type,	the	length	of	the	addresses,	and	the	list	of	addresses—it’s	a	general-purpose	structure	that’s	pretty	easy	to	use	for	our	specific	purposes	once	you	see	how.)	gethostbyaddr()	takes	a	struct	in_addr	or	struct	in6_addr	and	brings	you	up	a	corresponding	host	name	(if	there	is	one),	so
it’s	sort	of	the	reverse	of	gethostbyname().	As	for	parameters,	even	though	addr	is	a	char*,	you	actually	want	to	pass	in	a	pointer	to	a	struct	in_addr.	len	should	be	sizeof(struct	in_addr),	and	type	should	be	AF_INET.	So	what	is	this	struct	hostent	that	gets	returned?	It	has	a	number	of	fields	that	contain	information	about	the	host	in	question.	char
*h_name	The	real	canonical	host	name.	char	**h_aliases	A	list	of	aliases	that	can	be	accessed	with	arrays—the	last	element	is	NULL	int	h_addrtype	The	result’s	address	type,	which	really	should	be	AF_INET	for	our	purposes.	int	length	The	length	of	the	addresses	in	bytes,	which	is	4	for	IP	(version	4)	addresses.	char	**h_addr_list	A	list	of	IP	addresses
for	this	host.	Although	this	is	a	char**,	it’s	really	an	array	of	struct	in_addr*s	in	disguise.	The	last	array	element	is	NULL.	h_addr	A	commonly	defined	alias	for	h_addr_list[0].	If	you	just	want	any	old	IP	address	for	this	host	(yeah,	they	can	have	more	than	one)	just	use	this	field.	Return	Value	Returns	a	pointer	to	a	resultant	struct	hostent	on	success,	or
NULL	on	error.	Instead	of	the	normal	perror()	and	all	that	stuff	you’d	normally	use	for	error	reporting,	these	functions	have	parallel	results	in	the	variable	h_errno,	which	can	be	printed	using	the	functions	herror()	or	hstrerror().	These	work	just	like	the	classic	errno,	perror(),	and	strerror()	functions	you’re	used	to.	Example	//	THIS	IS	A	DEPRECATED
METHOD	OF	GETTING	HOST	NAMES	//	use	getaddrinfo()	instead!	#include	#include	#include	#include	#include	#include	#include	int	main(int	argc,	char	*argv[])	{	int	i;	struct	hostent	*he;	struct	in_addr	**addr_list;	if	(argc	!=	2)	{	fprintf(stderr,"usage:	ghbn	hostname");	return	1;	}	if	((he	=	gethostbyname(argv[1]))	==	NULL)	{	//	get	the	host	info
herror("gethostbyname");	return	2;	}	//	print	information	about	this	host:	printf("Official	name	is:	%s",	he->h_name);	printf("	IP	addresses:	");	addr_list	=	(struct	in_addr	**)he->h_addr_list;	for(i	=	0;	addr_list[i]	!=	NULL;	i++)	{	printf("%s	",	inet_ntoa(*addr_list[i]));	}	printf("");	return	0;	}	//	THIS	HAS	BEEN	SUPERCEDED	//	use	getnameinfo()	instead!
struct	hostent	*he;	struct	in_addr	ipv4addr;	struct	in6_addr	ipv6addr;	inet_pton(AF_INET,	"192.0.2.34",	&ipv4addr);	he	=	gethostbyaddr(&ipv4addr,	sizeof	ipv4addr,	AF_INET);	printf("Host	name:	%s",	he->h_name);	inet_pton(AF_INET6,	"2001:db8:63b3:1::beef",	&ipv6addr);	he	=	gethostbyaddr(&ipv6addr,	sizeof	ipv6addr,	AF_INET6);	printf("Host
name:	%s",	he->h_name);	See	Also	getaddrinfo(),	getnameinfo(),	gethostname(),	errno,	perror(),	strerror(),	struct	in_addr	Look	up	the	host	name	and	service	name	information	for	a	given	struct	sockaddr.	Synopsis	#include	#include	int	getnameinfo(const	struct	sockaddr	*sa,	socklen_t	salen,	char	*host,	size_t	hostlen,	char	*serv,	size_t	servlen,	int
flags);	Description	This	function	is	the	opposite	of	getaddrinfo(),	that	is,	this	function	takes	an	already	loaded	struct	sockaddr	and	does	a	name	and	service	name	lookup	on	it.	It	replaces	the	old	gethostbyaddr()	and	getservbyport()	functions.	You	have	to	pass	in	a	pointer	to	a	struct	sockaddr	(which	in	actuality	is	probably	a	struct	sockaddr_in	or	struct
sockaddr_in6	that	you’ve	cast)	in	the	sa	parameter,	and	the	length	of	that	struct	in	the	salen.	The	resultant	host	name	and	service	name	will	be	written	to	the	area	pointed	to	by	the	host	and	serv	parameters.	Of	course,	you	have	to	specify	the	max	lengths	of	these	buffers	in	hostlen	and	servlen.	Finally,	there	are	several	flags	you	can	pass,	but	here	a	a
couple	good	ones.	NI_NOFQDN	will	cause	the	host	to	only	contain	the	host	name,	not	the	whole	domain	name.	NI_NAMEREQD	will	cause	the	function	to	fail	if	the	name	cannot	be	found	with	a	DNS	lookup	(if	you	don’t	specify	this	flag	and	the	name	can’t	be	found,	getnameinfo()	will	put	a	string	version	of	the	IP	address	in	host	instead).	As	always,
check	your	local	man	pages	for	the	full	scoop.	Return	Value	Returns	zero	on	success,	or	non-zero	on	error.	If	the	return	value	is	non-zero,	it	can	be	passed	to	gai_strerror()	to	get	a	human-readable	string.	See	getaddrinfo	for	more	information.	Example	struct	sockaddr_in6	sa;	//	could	be	IPv4	if	you	want	char	host[1024];	char	service[20];	//	pretend	sa
is	full	of	good	information	about	the	host	and	port...	getnameinfo(&sa,	sizeof	sa,	host,	sizeof	host,	service,	sizeof	service,	0);	printf("	host:	%s",	host);	//	e.g.	"www.example.com"	printf("service:	%s",	service);	//	e.g.	"http"	See	Also	getaddrinfo(),	gethostbyaddr()	getpeername()	Return	address	info	about	the	remote	side	of	the	connection	Synopsis
#include	int	getpeername(int	s,	struct	sockaddr	*addr,	socklen_t	*len);	Description	Once	you	have	either	accept()ed	a	remote	connection,	or	connect()ed	to	a	server,	you	now	have	what	is	known	as	a	peer.	Your	peer	is	simply	the	computer	you’re	connected	to,	identified	by	an	IP	address	and	a	port.	So…	getpeername()	simply	returns	a	struct
sockaddr_in	filled	with	information	about	the	machine	you’re	connected	to.	Why	is	it	called	a	“name”?	Well,	there	are	a	lot	of	different	kinds	of	sockets,	not	just	Internet	Sockets	like	we’re	using	in	this	guide,	and	so	“name”	was	a	nice	generic	term	that	covered	all	cases.	In	our	case,	though,	the	peer’s	“name”	is	it’s	IP	address	and	port.	Although	the
function	returns	the	size	of	the	resultant	address	in	len,	you	must	preload	len	with	the	size	of	addr.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	//	assume	s	is	a	connected	socket	socklen_t	len;	struct	sockaddr_storage	addr;	char	ipstr[INET6_ADDRSTRLEN];	int	port;	len	=	sizeof	addr;
getpeername(s,	(struct	sockaddr*)&addr,	&len);	//	deal	with	both	IPv4	and	IPv6:	if	(addr.ss_family	==	AF_INET)	{	struct	sockaddr_in	*s	=	(struct	sockaddr_in	*)&addr;	port	=	ntohs(s->sin_port);	inet_ntop(AF_INET,	&s->sin_addr,	ipstr,	sizeof	ipstr);	}	else	{	//	AF_INET6	struct	sockaddr_in6	*s	=	(struct	sockaddr_in6	*)&addr;	port	=	ntohs(s-
>sin6_port);	inet_ntop(AF_INET6,	&s->sin6_addr,	ipstr,	sizeof	ipstr);	}	printf("Peer	IP	address:	%s",	ipstr);	printf("Peer	port	:	%d",	port);	See	Also	gethostname(),	gethostbyname(),	gethostbyaddr()	errno	Holds	the	error	code	for	the	last	system	call	Synopsis	#include	int	errno;	Description	This	is	the	variable	that	holds	error	information	for	a	lot	of
system	calls.	If	you’ll	recall,	things	like	socket()	and	listen()	return	-1	on	error,	and	they	set	the	exact	value	of	errno	to	let	you	know	specifically	which	error	occurred.	The	header	file	errno.h	lists	a	bunch	of	constant	symbolic	names	for	errors,	such	as	EADDRINUSE,	EPIPE,	ECONNREFUSED,	etc.	Your	local	man	pages	will	tell	you	what	codes	can	be
returned	as	an	error,	and	you	can	use	these	at	run	time	to	handle	different	errors	in	different	ways.	Or,	more	commonly,	you	can	call	perror()	or	strerror()	to	get	a	human-readable	version	of	the	error.	One	thing	to	note,	for	you	multithreading	enthusiasts,	is	that	on	most	systems	errno	is	defined	in	a	threadsafe	manner.	(That	is,	it’s	not	actually	a
global	variable,	but	it	behaves	just	like	a	global	variable	would	in	a	single-threaded	environment.)	Return	Value	The	value	of	the	variable	is	the	latest	error	to	have	transpired,	which	might	be	the	code	for	“success”	if	the	last	action	succeeded.	Example	s	=	socket(PF_INET,	SOCK_STREAM,	0);	if	(s	==	-1)	{	perror("socket");	//	or	use	strerror()	}
tryagain:	if	(select(n,	&readfds,	NULL,	NULL)	==	-1)	{	//	an	error	has	occurred!!	//	if	we	were	only	interrupted,	just	restart	the	select()	call:	if	(errno	==	EINTR)	goto	tryagain;	//	AAAA!	goto!!!	//	otherwise	it's	a	more	serious	error:	perror("select");	exit(1);	}	See	Also	perror(),	strerror()	fcntl()	Control	socket	descriptors	Synopsis	#include	#include	int
fcntl(int	s,	int	cmd,	long	arg);	Description	This	function	is	typically	used	to	do	file	locking	and	other	file-oriented	stuff,	but	it	also	has	a	couple	socket-related	functions	that	you	might	see	or	use	from	time	to	time.	Parameter	s	is	the	socket	descriptor	you	wish	to	operate	on,	cmd	should	be	set	to	F_SETFL,	and	arg	can	be	one	of	the	following	commands.
(Like	I	said,	there’s	more	to	fcntl()	than	I’m	letting	on	here,	but	I’m	trying	to	stay	socket-oriented.)	O_NONBLOCK	Set	the	socket	to	be	non-blocking.	See	the	section	on	blocking	for	more	details.	O_ASYNC	Set	the	socket	to	do	asynchronous	I/O.	When	data	is	ready	to	be	recv()’d	on	the	socket,	the	signal	SIGIO	will	be	raised.	This	is	rare	to	see,	and
beyond	the	scope	of	the	guide.	And	I	think	it’s	only	available	on	certain	systems.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Different	uses	of	the	fcntl()	system	call	actually	have	different	return	values,	but	I	haven’t	covered	them	here	because	they’re	not	socket-related.	See	your	local	fcntl()	man	page	for
more	information.	Example	int	s	=	socket(PF_INET,	SOCK_STREAM,	0);	fcntl(s,	F_SETFL,	O_NONBLOCK);	//	set	to	non-blocking	fcntl(s,	F_SETFL,	O_ASYNC);	//	set	to	asynchronous	I/O	See	Also	Blocking,	send()	htons(),	htonl(),	ntohs(),	ntohl()	Convert	multi-byte	integer	types	from	host	byte	order	to	network	byte	order	Synopsis	#include	uint32_t
htonl(uint32_t	hostlong);	uint16_t	htons(uint16_t	hostshort);	uint32_t	ntohl(uint32_t	netlong);	uint16_t	ntohs(uint16_t	netshort);	Description	Just	to	make	you	really	unhappy,	different	computers	use	different	byte	orderings	internally	for	their	multibyte	integers	(i.e.	any	integer	that’s	larger	than	a	char).	The	upshot	of	this	is	that	if	you	send()	a	two-byte
short	int	from	an	Intel	box	to	a	Mac	(before	they	became	Intel	boxes,	too,	I	mean),	what	one	computer	thinks	is	the	number	1,	the	other	will	think	is	the	number	256,	and	vice-versa.	The	way	to	get	around	this	problem	is	for	everyone	to	put	aside	their	differences	and	agree	that	Motorola	and	IBM	had	it	right,	and	Intel	did	it	the	weird	way,	and	so	we
all	convert	our	byte	orderings	to	“big-endian”	before	sending	them	out.	Since	Intel	is	a	“little-endian”	machine,	it’s	far	more	politically	correct	to	call	our	preferred	byte	ordering	“Network	Byte	Order”.	So	these	functions	convert	from	your	native	byte	order	to	network	byte	order	and	back	again.	(This	means	on	Intel	these	functions	swap	all	the	bytes
around,	and	on	PowerPC	they	do	nothing	because	the	bytes	are	already	in	Network	Byte	Order.	But	you	should	always	use	them	in	your	code	anyway,	since	someone	might	want	to	build	it	on	an	Intel	machine	and	still	have	things	work	properly.)	Note	that	the	types	involved	are	32-bit	(4	byte,	probably	int)	and	16-bit	(2	byte,	very	likely	short)	numbers.
64-bit	machines	might	have	a	htonll()	for	64-bit	ints,	but	I’ve	not	seen	it.	You’ll	just	have	to	write	your	own.	Anyway,	the	way	these	functions	work	is	that	you	first	decide	if	you’re	converting	from	host	(your	machine’s)	byte	order	or	from	network	byte	order.	If	“host”,	the	the	first	letter	of	the	function	you’re	going	to	call	is	“h”.	Otherwise	it’s	“n”	for
“network”.	The	middle	of	the	function	name	is	always	“to”	because	you’re	converting	from	one	“to”	another,	and	the	penultimate	letter	shows	what	you’re	converting	to.	The	last	letter	is	the	size	of	the	data,	“s”	for	short,	or	“l”	for	long.	Thus:	htons()	host	to	network	short	htonl()	host	to	network	long	ntohs()	network	to	host	short	ntohl()	network	to	host
long	Return	Value	Each	function	returns	the	converted	value.	Example	uint32_t	some_long	=	10;	uint16_t	some_short	=	20;	uint32_t	network_byte_order;	//	convert	and	send	network_byte_order	=	htonl(some_long);	send(s,	&network_byte_order,	sizeof(uint32_t),	0);	some_short	==	ntohs(htons(some_short));	//	this	expression	is	true	inet_ntoa(),
inet_aton(),	inet_addr	Convert	IP	addresses	from	a	dots-and-number	string	to	a	struct	in_addr	and	back	Synopsis	#include	#include	#include	//	ALL	THESE	ARE	DEPRECATED!	Use	inet_pton()	or	inet_ntop()	instead!!	char	*inet_ntoa(struct	in_addr	in);	int	inet_aton(const	char	*cp,	struct	in_addr	*inp);	in_addr_t	inet_addr(const	char	*cp);	Description
These	functions	are	deprecated	because	they	don’t	handle	IPv6!	Use	inet_ntop()	or	inet_pton()	instead!	They	are	included	here	because	they	can	still	be	found	in	the	wild.	All	of	these	functions	convert	from	a	struct	in_addr	(part	of	your	struct	sockaddr_in,	most	likely)	to	a	string	in	dots-and-numbers	format	(e.g.	“192.168.5.10”)	and	vice-versa.	If	you
have	an	IP	address	passed	on	the	command	line	or	something,	this	is	the	easiest	way	to	get	a	struct	in_addr	to	connect()	to,	or	whatever.	If	you	need	more	power,	try	some	of	the	DNS	functions	like	gethostbyname()	or	attempt	a	coup	d’État	in	your	local	country.	The	function	inet_ntoa()	converts	a	network	address	in	a	struct	in_addr	to	a	dots-and-
numbers	format	string.	The	“n”	in	“ntoa”	stands	for	network,	and	the	“a”	stands	for	ASCII	for	historical	reasons	(so	it’s	“Network	To	ASCII”—the	“toa”	suffix	has	an	analogous	friend	in	the	C	library	called	atoi()	which	converts	an	ASCII	string	to	an	integer).	The	function	inet_aton()	is	the	opposite,	converting	from	a	dots-and-numbers	string	into	a
in_addr_t	(which	is	the	type	of	the	field	s_addr	in	your	struct	in_addr).	Finally,	the	function	inet_addr()	is	an	older	function	that	does	basically	the	same	thing	as	inet_aton().	It’s	theoretically	deprecated,	but	you’ll	see	it	a	lot	and	the	police	won’t	come	get	you	if	you	use	it.	Return	Value	inet_aton()	returns	non-zero	if	the	address	is	a	valid	one,	and	it
returns	zero	if	the	address	is	invalid.	inet_ntoa()	returns	the	dots-and-numbers	string	in	a	static	buffer	that	is	overwritten	with	each	call	to	the	function.	inet_addr()	returns	the	address	as	an	in_addr_t,	or	-1	if	there’s	an	error.	(That	is	the	same	result	as	if	you	tried	to	convert	the	string	“255.255.255.255”,	which	is	a	valid	IP	address.	This	is	why
inet_aton()	is	better.)	Example	struct	sockaddr_in	antelope;	char	*some_addr;	inet_aton("10.0.0.1",	&antelope.sin_addr);	//	store	IP	in	antelope	some_addr	=	inet_ntoa(antelope.sin_addr);	//	return	the	IP	printf("%s",	some_addr);	//	prints	"10.0.0.1"	//	and	this	call	is	the	same	as	the	inet_aton()	call,	above:	antelope.sin_addr.s_addr	=	inet_addr("10.0.0.1");
See	Also	inet_ntop(),	inet_pton(),	gethostbyname(),	gethostbyaddr()	inet_ntop(),	inet_pton()	Convert	IP	addresses	to	human-readable	form	and	back.	Synopsis	#include	const	char	*inet_ntop(int	af,	const	void	*src,	char	*dst,	socklen_t	size);	int	inet_pton(int	af,	const	char	*src,	void	*dst);	Description	These	functions	are	for	dealing	with	human-readable
IP	addresses	and	converting	them	to	their	binary	representation	for	use	with	various	functions	and	system	calls.	The	“n”	stands	for	“network”,	and	“p”	for	“presentation”.	Or	“text	presentation”.	But	you	can	think	of	it	as	“printable”.	“ntop”	is	“network	to	printable”.	See?	Sometimes	you	don’t	want	to	look	at	a	pile	of	binary	numbers	when	looking	at	an
IP	address.	You	want	it	in	a	nice	printable	form,	like	192.0.2.180,	or	2001:db8:8714:3a90::12.	In	that	case,	inet_ntop()	is	for	you.	inet_ntop()	takes	the	address	family	in	the	af	parameter	(either	AF_INET	or	AF_INET6).	The	src	parameter	should	be	a	pointer	to	either	a	struct	in_addr	or	struct	in6_addr	containing	the	address	you	wish	to	convert	to	a
string.	Finally	dst	and	size	are	the	pointer	to	the	destination	string	and	the	maximum	length	of	that	string.	What	should	the	maximum	length	of	the	dst	string	be?	What	is	the	maximum	length	for	IPv4	and	IPv6	addresses?	Fortunately	there	are	a	couple	of	macros	to	help	you	out.	The	maximum	lengths	are:	INET_ADDRSTRLEN	and
INET6_ADDRSTRLEN.	Other	times,	you	might	have	a	string	containing	an	IP	address	in	readable	form,	and	you	want	to	pack	it	into	a	struct	sockaddr_in	or	a	struct	sockaddr_in6.	In	that	case,	the	opposite	funcion	inet_pton()	is	what	you’re	after.	inet_pton()	also	takes	an	address	family	(either	AF_INET	or	AF_INET6)	in	the	af	parameter.	The	src
parameter	is	a	pointer	to	a	string	containing	the	IP	address	in	printable	form.	Lastly	the	dst	parameter	points	to	where	the	result	should	be	stored,	which	is	probably	a	struct	in_addr	or	struct	in6_addr.	These	functions	don’t	do	DNS	lookups—you’ll	need	getaddrinfo()	for	that.	Return	Value	inet_ntop()	returns	the	dst	parameter	on	success,	or	NULL	on
failure	(and	errno	is	set).	inet_pton()	returns	1	on	success.	It	returns	-1	if	there	was	an	error	(errno	is	set),	or	0	if	the	input	isn’t	a	valid	IP	address.	Example	//	IPv4	demo	of	inet_ntop()	and	inet_pton()	struct	sockaddr_in	sa;	char	str[INET_ADDRSTRLEN];	//	store	this	IP	address	in	sa:	inet_pton(AF_INET,	"192.0.2.33",	&(sa.sin_addr));	//	now	get	it	back
and	print	it	inet_ntop(AF_INET,	&(sa.sin_addr),	str,	INET_ADDRSTRLEN);	printf("%s",	str);	//	prints	"192.0.2.33"	//	IPv6	demo	of	inet_ntop()	and	inet_pton()	//	(basically	the	same	except	with	a	bunch	of	6s	thrown	around)	struct	sockaddr_in6	sa;	char	str[INET6_ADDRSTRLEN];	//	store	this	IP	address	in	sa:	inet_pton(AF_INET6,
"2001:db8:8714:3a90::12",	&(sa.sin6_addr));	//	now	get	it	back	and	print	it	inet_ntop(AF_INET6,	&(sa.sin6_addr),	str,	INET6_ADDRSTRLEN);	printf("%s",	str);	//	prints	"2001:db8:8714:3a90::12"	//	Helper	function	you	can	use:	//Convert	a	struct	sockaddr	address	to	a	string,	IPv4	and	IPv6:	char	*get_ip_str(const	struct	sockaddr	*sa,	char	*s,	size_t
maxlen)	{	switch(sa->sa_family)	{	case	AF_INET:	inet_ntop(AF_INET,	&(((struct	sockaddr_in	*)sa)->sin_addr),	s,	maxlen);	break;	case	AF_INET6:	inet_ntop(AF_INET6,	&(((struct	sockaddr_in6	*)sa)->sin6_addr),	s,	maxlen);	break;	default:	strncpy(s,	"Unknown	AF",	maxlen);	return	NULL;	}	return	s;	}	See	Also	getaddrinfo()	listen()	Tell	a	socket	to	listen
for	incoming	connections	Synopsis	#include	int	listen(int	s,	int	backlog);	Description	You	can	take	your	socket	descriptor	(made	with	the	socket()	system	call)	and	tell	it	to	listen	for	incoming	connections.	This	is	what	differentiates	the	servers	from	the	clients,	guys.	The	backlog	parameter	can	mean	a	couple	different	things	depending	on	the	system
you	on,	but	loosely	it	is	how	many	pending	connections	you	can	have	before	the	kernel	starts	rejecting	new	ones.	So	as	the	new	connections	come	in,	you	should	be	quick	to	accept()	them	so	that	the	backlog	doesn’t	fill.	Try	setting	it	to	10	or	so,	and	if	your	clients	start	getting	“Connection	refused”	under	heavy	load,	set	it	higher.	Before	calling	listen(),
your	server	should	call	bind()	to	attach	itself	to	a	specific	port	number.	That	port	number	(on	the	server’s	IP	address)	will	be	the	one	that	clients	connect	to.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	struct	addrinfo	hints,	*res;	int	sockfd;	//	first,	load	up	address	structs	with	getaddrinfo():
memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever	hints.ai_socktype	=	SOCK_STREAM;	hints.ai_flags	=	AI_PASSIVE;	//	fill	in	my	IP	for	me	getaddrinfo(NULL,	"3490",	&hints,	&res);	//	make	a	socket:	sockfd	=	socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	//	bind	it	to	the	port	we	passed	in	to
getaddrinfo():	bind(sockfd,	res->ai_addr,	res->ai_addrlen);	listen(sockfd,	10);	//	set	s	up	to	be	a	server	(listening)	socket	//	then	have	an	accept()	loop	down	here	somewhere	See	Also	accept(),	bind(),	socket()	perror(),	strerror()	Print	an	error	as	a	human-readable	string	Synopsis	#include	#include	//	for	strerror()	void	perror(const	char	*s);	char
*strerror(int	errnum);	Description	Since	so	many	functions	return	-1	on	error	and	set	the	value	of	the	variable	errno	to	be	some	number,	it	would	sure	be	nice	if	you	could	easily	print	that	in	a	form	that	made	sense	to	you.	Mercifully,	perror()	does	that.	If	you	want	more	description	to	be	printed	before	the	error,	you	can	point	the	parameter	s	to	it	(or
you	can	leave	s	as	NULL	and	nothing	additional	will	be	printed).	In	a	nutshell,	this	function	takes	errno	values,	like	ECONNRESET,	and	prints	them	nicely,	like	“Connection	reset	by	peer.”	The	function	strerror()	is	very	similar	to	perror(),	except	it	returns	a	pointer	to	the	error	message	string	for	a	given	value	(you	usually	pass	in	the	variable	errno).
Return	Value	strerror()	returns	a	pointer	to	the	error	message	string.	Example	int	s;	s	=	socket(PF_INET,	SOCK_STREAM,	0);	if	(s	==	-1)	{	//	some	error	has	occurred	//	prints	"socket	error:	"	+	the	error	message:	perror("socket	error");	}	//	similarly:	if	(listen(s,	10)	==	-1)	{	//	this	prints	"an	error:	"	+	the	error	message	from	errno:	printf("an	error:
%s",	strerror(errno));	}	See	Also	errno	poll()	Test	for	events	on	multiple	sockets	simultaneously	Synopsis	#include	int	poll(struct	pollfd	*ufds,	unsigned	int	nfds,	int	timeout);	Description	This	function	is	very	similar	to	select()	in	that	they	both	watch	sets	of	file	descriptors	for	events,	such	as	incoming	data	ready	to	recv(),	socket	ready	to	send()	data	to,
out-of-band	data	ready	to	recv(),	errors,	etc.	The	basic	idea	is	that	you	pass	an	array	of	nfds	struct	pollfds	in	ufds,	along	with	a	timeout	in	milliseconds	(1000	milliseconds	in	a	second).	The	timeout	can	be	negative	if	you	want	to	wait	forever.	If	no	event	happens	on	any	of	the	socket	descriptors	by	the	timeout,	poll()	will	return.	Each	element	in	the	array
of	struct	pollfds	represents	one	socket	descriptor,	and	contains	the	following	fields:	struct	pollfd	{	int	fd;	//	the	socket	descriptor	short	events;	//	bitmap	of	events	we're	interested	in	short	revents;	//	when	poll()	returns,	bitmap	of	events	that	occurred	};	Before	calling	poll(),	load	fd	with	the	socket	descriptor	(if	you	set	fd	to	a	negative	number,	this
struct	pollfd	is	ignored	and	its	revents	field	is	set	to	zero)	and	then	construct	the	events	field	by	bitwise-ORing	the	following	macros:	POLLIN	Alert	me	when	data	is	ready	to	recv()	on	this	socket.	POLLOUT	Alert	me	when	I	can	send()	data	to	this	socket	without	blocking.	POLLPRI	Alert	me	when	out-of-band	data	is	ready	to	recv()	on	this	socket.	Once
the	poll()	call	returns,	the	revents	field	will	be	constructed	as	a	bitwise-OR	of	the	above	fields,	telling	you	which	descriptors	actually	have	had	that	event	occur.	Additionally,	these	other	fields	might	be	present:	POLLERR	An	error	has	occurred	on	this	socket.	POLLHUP	The	remote	side	of	the	connection	hung	up.	POLLNVAL	Something	was	wrong	with
the	socket	descriptor	fd—maybe	it’s	uninitialized?	Return	Value	Returns	the	number	of	elements	in	the	ufds	array	that	have	had	event	occur	on	them;	this	can	be	zero	if	the	timeout	occurred.	Also	returns	-1	on	error	(and	errno	will	be	set	accordingly).	Example	int	s1,	s2;	int	rv;	char	buf1[256],	buf2[256];	struct	pollfd	ufds[2];	s1	=	socket(PF_INET,
SOCK_STREAM,	0);	s2	=	socket(PF_INET,	SOCK_STREAM,	0);	//	pretend	we've	connected	both	to	a	server	at	this	point	//connect(s1,	...)...	//connect(s2,	...)...	//	set	up	the	array	of	file	descriptors.	//	//	in	this	example,	we	want	to	know	when	there's	normal	or	out-of-band	//	data	ready	to	be	recv()'d...	ufds[0].fd	=	s1;	ufds[0].events	=	POLLIN	|	POLLPRI;	//
check	for	normal	or	out-of-band	ufds[1].fd	=	s2;	ufds[1].events	=	POLLIN;	//	check	for	just	normal	data	//	wait	for	events	on	the	sockets,	3.5	second	timeout	rv	=	poll(ufds,	2,	3500);	if	(rv	==	-1)	{	perror("poll");	//	error	occurred	in	poll()	}	else	if	(rv	==	0)	{	printf("Timeout	occurred!	No	data	after	3.5	seconds.");	}	else	{	//	check	for	events	on	s1:	if
(ufds[0].revents	&	POLLIN)	{	recv(s1,	buf1,	sizeof	buf1,	0);	//	receive	normal	data	}	if	(ufds[0].revents	&	POLLPRI)	{	recv(s1,	buf1,	sizeof	buf1,	MSG_OOB);	//	out-of-band	data	}	//	check	for	events	on	s2:	if	(ufds[1].revents	&	POLLIN)	{	recv(s1,	buf2,	sizeof	buf2,	0);	}	}	See	Also	select()	recv(),	recvfrom()	Receive	data	on	a	socket	Synopsis	#include
#include	ssize_t	recv(int	s,	void	*buf,	size_t	len,	int	flags);	ssize_t	recvfrom(int	s,	void	*buf,	size_t	len,	int	flags,	struct	sockaddr	*from,	socklen_t	*fromlen);	Description	Once	you	have	a	socket	up	and	connected,	you	can	read	incoming	data	from	the	remote	side	using	the	recv()	(for	TCP	SOCK_STREAM	sockets)	and	recvfrom()	(for	UDP	SOCK_DGRAM
sockets).	Both	functions	take	the	socket	descriptor	s,	a	pointer	to	the	buffer	buf,	the	size	(in	bytes)	of	the	buffer	len,	and	a	set	of	flags	that	control	how	the	functions	work.	Additionally,	the	recvfrom()	takes	a	struct	sockaddr*,	from	that	will	tell	you	where	the	data	came	from,	and	will	fill	in	fromlen	with	the	size	of	struct	sockaddr.	(You	must	also
initialize	fromlen	to	be	the	size	of	from	or	struct	sockaddr.)	So	what	wondrous	flags	can	you	pass	into	this	function?	Here	are	some	of	them,	but	you	should	check	your	local	man	pages	for	more	information	and	what	is	actually	supported	on	your	system.	You	bitwise-or	these	together,	or	just	set	flags	to	0	if	you	want	it	to	be	a	regular	vanilla	recv().
MSG_OOB	Receive	Out	of	Band	data.	This	is	how	to	get	data	that	has	been	sent	to	you	with	the	MSG_OOB	flag	in	send().	As	the	receiving	side,	you	will	have	had	signal	SIGURG	raised	telling	you	there	is	urgent	data.	In	your	handler	for	that	signal,	you	could	call	recv()	with	this	MSG_OOB	flag.	MSG_PEEK	If	you	want	to	call	recv()	“just	for	pretend”,
you	can	call	it	with	this	flag.	This	will	tell	you	what’s	waiting	in	the	buffer	for	when	you	call	recv()	“for	real”	(i.e.	without	the	MSG_PEEK	flag.	It’s	like	a	sneak	preview	into	the	next	recv()	call.	MSG_WAITALL	Tell	recv()	to	not	return	until	all	the	data	you	specified	in	the	len	parameter.	It	will	ignore	your	wishes	in	extreme	circumstances,	however,	like	if
a	signal	interrupts	the	call	or	if	some	error	occurs	or	if	the	remote	side	closes	the	connection,	etc.	Don’t	be	mad	with	it.	When	you	call	recv(),	it	will	block	until	there	is	some	data	to	read.	If	you	want	to	not	block,	set	the	socket	to	non-blocking	or	check	with	select()	or	poll()	to	see	if	there	is	incoming	data	before	calling	recv()	or	recvfrom().	Return
Value	Returns	the	number	of	bytes	actually	received	(which	might	be	less	than	you	requested	in	the	len	parameter),	or	-1	on	error	(and	errno	will	be	set	accordingly).	If	the	remote	side	has	closed	the	connection,	recv()	will	return	0.	This	is	the	normal	method	for	determining	if	the	remote	side	has	closed	the	connection.	Normality	is	good,	rebel!
Example	//	stream	sockets	and	recv()	struct	addrinfo	hints,	*res;	int	sockfd;	char	buf[512];	int	byte_count;	//	get	host	info,	make	socket,	and	connect	it	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever	hints.ai_socktype	=	SOCK_STREAM;	getaddrinfo("www.example.com",	"3490",	&hints,	&res);	sockfd	=
socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	connect(sockfd,	res->ai_addr,	res->ai_addrlen);	//	all	right!	now	that	we're	connected,	we	can	receive	some	data!	byte_count	=	recv(sockfd,	buf,	sizeof	buf,	0);	printf("recv()'d	%d	bytes	of	data	in	buf",	byte_count);	//	datagram	sockets	and	recvfrom()	struct	addrinfo	hints,	*res;	int	sockfd;	int
byte_count;	socklen_t	fromlen;	struct	sockaddr_storage	addr;	char	buf[512];	char	ipstr[INET6_ADDRSTRLEN];	//	get	host	info,	make	socket,	bind	it	to	port	4950	memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	use	IPv4	or	IPv6,	whichever	hints.ai_socktype	=	SOCK_DGRAM;	hints.ai_flags	=	AI_PASSIVE;	getaddrinfo(NULL,	"4950",
&hints,	&res);	sockfd	=	socket(res->ai_family,	res->ai_socktype,	res->ai_protocol);	bind(sockfd,	res->ai_addr,	res->ai_addrlen);	//	no	need	to	accept(),	just	recvfrom():	fromlen	=	sizeof	addr;	byte_count	=	recvfrom(sockfd,	buf,	sizeof	buf,	0,	&addr,	&fromlen);	printf("recv()'d	%d	bytes	of	data	in	buf",	byte_count);	printf("from	IP	address	%s",
inet_ntop(addr.ss_family,	addr.ss_family	==	AF_INET?	((struct	sockadd_in	*)&addr)->sin_addr:	((struct	sockadd_in6	*)&addr)->sin6_addr,	ipstr,	sizeof	ipstr);	See	Also	send(),	sendto(),	select(),	poll(),	Blocking	select()	Check	if	sockets	descriptors	are	ready	to	read/write	Synopsis	#include	int	select(int	n,	fd_set	*readfds,	fd_set	*writefds,	fd_set
*exceptfds,	struct	timeval	*timeout);	FD_SET(int	fd,	fd_set	*set);	FD_CLR(int	fd,	fd_set	*set);	FD_ISSET(int	fd,	fd_set	*set);	FD_ZERO(fd_set	*set);	Description	The	select()	function	gives	you	a	way	to	simultaneously	check	multiple	sockets	to	see	if	they	have	data	waiting	to	be	recv()d,	or	if	you	can	send()	data	to	them	without	blocking,	or	if	some
exception	has	occurred.	You	populate	your	sets	of	socket	descriptors	using	the	macros,	like	FD_SET(),	above.	Once	you	have	the	set,	you	pass	it	into	the	function	as	one	of	the	following	parameters:	readfds	if	you	want	to	know	when	any	of	the	sockets	in	the	set	is	ready	to	recv()	data,	writefds	if	any	of	the	sockets	is	ready	to	send()	data	to,	and/or
exceptfds	if	you	need	to	know	when	an	exception	(error)	occurs	on	any	of	the	sockets.	Any	or	all	of	these	parameters	can	be	NULL	if	you’re	not	interested	in	those	types	of	events.	After	select()	returns,	the	values	in	the	sets	will	be	changed	to	show	which	are	ready	for	reading	or	writing,	and	which	have	exceptions.	The	first	parameter,	n	is	the
highest-numbered	socket	descriptor	(they’re	just	ints,	remember?)	plus	one.	Lastly,	the	struct	timeval,	timeout,	at	the	end—this	lets	you	tell	select()	how	long	to	check	these	sets	for.	It’ll	return	after	the	timeout,	or	when	an	event	occurs,	whichever	is	first.	The	struct	timeval	has	two	fields:	tv_sec	is	the	number	of	seconds,	to	which	is	added	tv_usec,	the
number	of	microseconds	(1,000,000	microseconds	in	a	second).	The	helper	macros	do	the	following:	FD_SET(int	fd,	fd_set	*set);	Add	fd	to	the	set.	FD_CLR(int	fd,	fd_set	*set);	Remove	fd	from	the	set.	FD_ISSET(int	fd,	fd_set	*set);	Return	true	if	fd	is	in	the	set.	FD_ZERO(fd_set	*set);	Clear	all	entries	from	the	set.	Note	for	Linux	users:	Linux’s	select()
can	return	“ready-to-read”	and	then	not	actually	be	ready	to	read,	thus	causing	the	subsequent	read()	call	to	block.	You	can	work	around	this	bug	by	setting	O_NONBLOCK	flag	on	the	receiving	socket	so	it	errors	with	EWOULDBLOCK,	then	ignoring	this	error	if	it	occurs.	See	the	fcntl()	reference	page	for	more	info	on	setting	a	socket	to	non-blocking.
Return	Value	Returns	the	number	of	descriptors	in	the	set	on	success,	0	if	the	timeout	was	reached,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Also,	the	sets	are	modified	to	show	which	sockets	are	ready.	Example	int	s1,	s2,	n;	fd_set	readfds;	struct	timeval	tv;	char	buf1[256],	buf2[256];	//	pretend	we've	connected	both	to	a	server	at	this	point
//s1	=	socket(...);	//s2	=	socket(...);	//connect(s1,	...)...	//connect(s2,	...)...	//	clear	the	set	ahead	of	time	FD_ZERO(&readfds);	//	add	our	descriptors	to	the	set	FD_SET(s1,	&readfds);	FD_SET(s2,	&readfds);	//	since	we	got	s2	second,	it's	the	"greater",	so	we	use	that	for	//	the	n	param	in	select()	n	=	s2	+	1;	//	wait	until	either	socket	has	data	ready	to	be
recv()d	(timeout	10.5	secs)	tv.tv_sec	=	10;	tv.tv_usec	=	500000;	rv	=	select(n,	&readfds,	NULL,	NULL,	&tv);	if	(rv	==	-1)	{	perror("select");	//	error	occurred	in	select()	}	else	if	(rv	==	0)	{	printf("Timeout	occurred!	No	data	after	10.5	seconds.");	}	else	{	//	one	or	both	of	the	descriptors	have	data	if	(FD_ISSET(s1,	&readfds))	{	recv(s1,	buf1,	sizeof
buf1,	0);	}	if	(FD_ISSET(s2,	&readfds))	{	recv(s2,	buf2,	sizeof	buf2,	0);	}	}	See	Also	poll()	setsockopt(),	getsockopt()	Set	various	options	for	a	socket	Synopsis	#include	#include	int	getsockopt(int	s,	int	level,	int	optname,	void	*optval,	socklen_t	*optlen);	int	setsockopt(int	s,	int	level,	int	optname,	const	void	*optval,	socklen_t	optlen);	Description	Sockets
are	fairly	configurable	beasts.	In	fact,	they	are	so	configurable,	I’m	not	even	going	to	cover	it	all	here.	It’s	probably	system-dependent	anyway.	But	I	will	talk	about	the	basics.	Obviously,	these	functions	get	and	set	certain	options	on	a	socket.	On	a	Linux	box,	all	the	socket	information	is	in	the	man	page	for	socket	in	section	7.	(Type:	“man	7	socket”	to
get	all	these	goodies.)	As	for	parameters,	s	is	the	socket	you’re	talking	about,	level	should	be	set	to	SOL_SOCKET.	Then	you	set	the	optname	to	the	name	you’re	interested	in.	Again,	see	your	man	page	for	all	the	options,	but	here	are	some	of	the	most	fun	ones:	SO_BINDTODEVICE	Bind	this	socket	to	a	symbolic	device	name	like	eth0	instead	of	using
bind()	to	bind	it	to	an	IP	address.	Type	the	command	ifconfig	under	Unix	to	see	the	device	names.	SO_REUSEADDR	Allows	other	sockets	to	bind()	to	this	port,	unless	there	is	an	active	listening	socket	bound	to	the	port	already.	This	enables	you	to	get	around	those	“Address	already	in	use”	error	messages	when	you	try	to	restart	your	server	after	a
crash.	SOCK_DGRAM	Allows	UDP	datagram	(SOCK_DGRAM)	sockets	to	send	and	receive	packets	sent	to	and	from	the	broadcast	address.	Does	nothing—NOTHING!!—to	TCP	stream	sockets!	Hahaha!	As	for	the	parameter	optval,	it’s	usually	a	pointer	to	an	int	indicating	the	value	in	question.	For	booleans,	zero	is	false,	and	non-zero	is	true.	And	that’s
an	absolute	fact,	unless	it’s	different	on	your	system.	If	there	is	no	parameter	to	be	passed,	optval	can	be	NULL.	The	final	parameter,	optlen,	should	be	set	to	the	length	of	optval,	probably	sizeof(int),	but	varies	depending	on	the	option.	Note	that	in	the	case	of	getsockopt(),	this	is	a	pointer	to	a	socklen_t,	and	it	specifies	the	maximum	size	object	that
will	be	stored	in	optval	(to	prevent	buffer	overflows).	And	getsockopt()	will	modify	the	value	of	optlen	to	reflect	the	number	of	bytes	actually	set.	Warning:	on	some	systems	(notably	Sun	and	Windows),	the	option	can	be	a	char	instead	of	an	int,	and	is	set	to,	for	example,	a	character	value	of	'1'	instead	of	an	int	value	of	1.	Again,	check	your	own	man
pages	for	more	info	with	“man	setsockopt”	and	“man	7	socket”!	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	int	optval;	int	optlen;	char	*optval2;	//	set	SO_REUSEADDR	on	a	socket	to	true	(1):	optval	=	1;	setsockopt(s1,	SOL_SOCKET,	SO_REUSEADDR,	&optval,	sizeof	optval);	//	bind	a	socket	to	a
device	name	(might	not	work	on	all	systems):	optval2	=	"eth1";	//	4	bytes	long,	so	4,	below:	setsockopt(s2,	SOL_SOCKET,	SO_BINDTODEVICE,	optval2,	4);	//	see	if	the	SO_BROADCAST	flag	is	set:	getsockopt(s3,	SOL_SOCKET,	SO_BROADCAST,	&optval,	&optlen);	if	(optval	!=	0)	{	print("SO_BROADCAST	enabled	on	s3!");	}	See	Also	fcntl()	send(),
sendto()	Send	data	out	over	a	socket	Synopsis	#include	#include	ssize_t	send(int	s,	const	void	*buf,	size_t	len,	int	flags);	ssize_t	sendto(int	s,	const	void	*buf,	size_t	len,	int	flags,	const	struct	sockaddr	*to,	socklen_t	tolen);	Description	These	functions	send	data	to	a	socket.	Generally	speaking,	send()	is	used	for	TCP	SOCK_STREAM	connected	sockets,
and	sendto()	is	used	for	UDP	SOCK_DGRAM	unconnected	datagram	sockets.	With	the	unconnected	sockets,	you	must	specify	the	destination	of	a	packet	each	time	you	send	one,	and	that’s	why	the	last	parameters	of	sendto()	define	where	the	packet	is	going.	With	both	send()	and	sendto(),	the	parameter	s	is	the	socket,	buf	is	a	pointer	to	the	data	you
want	to	send,	len	is	the	number	of	bytes	you	want	to	send,	and	flags	allows	you	to	specify	more	information	about	how	the	data	is	to	be	sent.	Set	flags	to	zero	if	you	want	it	to	be	“normal”	data.	Here	are	some	of	the	commonly	used	flags,	but	check	your	local	send()	man	pages	for	more	details:	MSG_OOB	Send	as	“out	of	band”	data.	TCP	supports	this,
and	it’s	a	way	to	tell	the	receiving	system	that	this	data	has	a	higher	priority	than	the	normal	data.	The	receiver	will	receive	the	signal	SIGURG	and	it	can	then	receive	this	data	without	first	receiving	all	the	rest	of	the	normal	data	in	the	queue.	MSG_DONTROUTE	Don’t	send	this	data	over	a	router,	just	keep	it	local.	MSG_DONTWAIT	If	send()	would
block	because	outbound	traffic	is	clogged,	have	it	return	EAGAIN.	This	is	like	a	“enable	non-blocking	just	for	this	send.”	See	the	section	on	blocking	for	more	details.	MSG_NOSIGNAL	If	you	send()	to	a	remote	host	which	is	no	longer	recv()ing,	you’ll	typically	get	the	signal	SIGPIPE.	Adding	this	flag	prevents	that	signal	from	being	raised.	Return	Value
Returns	the	number	of	bytes	actually	sent,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Note	that	the	number	of	bytes	actually	sent	might	be	less	than	the	number	you	asked	it	to	send!	See	the	section	on	handling	partial	send()s	for	a	helper	function	to	get	around	this.	Also,	if	the	socket	has	been	closed	by	either	side,	the	process	calling	send()
will	get	the	signal	SIGPIPE.	(Unless	send()	was	called	with	the	MSG_NOSIGNAL	flag.)	Example	int	spatula_count	=	3490;	char	*secret_message	=	"The	Cheese	is	in	The	Toaster";	int	stream_socket,	dgram_socket;	struct	sockaddr_in	dest;	int	temp;	//	first	with	TCP	stream	sockets:	//	assume	sockets	are	made	and	connected	//stream_socket	=	socket(...
//connect(stream_socket,	...	//	convert	to	network	byte	order	temp	=	htonl(spatula_count);	//	send	data	normally:	send(stream_socket,	&temp,	sizeof	temp,	0);	//	send	secret	message	out	of	band:	send(stream_socket,	secret_message,	strlen(secret_message)+1,	MSG_OOB);	//	now	with	UDP	datagram	sockets:	//getaddrinfo(...	//dest	=	...	//	assume	"dest"
holds	the	address	of	the	destination	//dgram_socket	=	socket(...	//	send	secret	message	normally:	sendto(dgram_socket,	secret_message,	strlen(secret_message)+1,	0,	(struct	sockaddr*)&dest,	sizeof	dest);	See	Also	recv(),	recvfrom()	shutdown()	Stop	further	sends	and	receives	on	a	socket	Synopsis	#include	int	shutdown(int	s,	int	how);	Description
That’s	it!	I’ve	had	it!	No	more	send()s	are	allowed	on	this	socket,	but	I	still	want	to	recv()	data	on	it!	Or	vice-versa!	How	can	I	do	this?	When	you	close()	a	socket	descriptor,	it	closes	both	sides	of	the	socket	for	reading	and	writing,	and	frees	the	socket	descriptor.	If	you	just	want	to	close	one	side	or	the	other,	you	can	use	this	shutdown()	call.	As	for
parameters,	s	is	obviously	the	socket	you	want	to	perform	this	action	on,	and	what	action	that	is	can	be	specified	with	the	how	parameter.	How	can	be	SHUT_RD	to	prevent	further	recv()s,	SHUT_WR	to	prohibit	further	send()s,	or	SHUT_RDWR	to	do	both.	Note	that	shutdown()	doesn’t	free	up	the	socket	descriptor,	so	you	still	have	to	eventually	close()
the	socket	even	if	it	has	been	fully	shut	down.	This	is	a	rarely	used	system	call.	Return	Value	Returns	zero	on	success,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	int	s	=	socket(PF_INET,	SOCK_STREAM,	0);	//	...do	some	send()s	and	stuff	in	here...	//	and	now	that	we're	done,	don't	allow	any	more	sends()s:	shutdown(s,	SHUT_WR);	See
Also	close()	socket()	Allocate	a	socket	descriptor	Synopsis	#include	#include	int	socket(int	domain,	int	type,	int	protocol);	Description	Returns	a	new	socket	descriptor	that	you	can	use	to	do	sockety	things	with.	This	is	generally	the	first	call	in	the	whopping	process	of	writing	a	socket	program,	and	you	can	use	the	result	for	subsequent	calls	to
listen(),	bind(),	accept(),	or	a	variety	of	other	functions.	In	usual	usage,	you	get	the	values	for	these	parameters	from	a	call	to	getaddrinfo(),	as	shown	in	the	example	below.	But	you	can	fill	them	in	by	hand	if	you	really	want	to.	domain	domain	describes	what	kind	of	socket	you’re	interested	in.	This	can,	believe	me,	be	a	wide	variety	of	things,	but	since
this	is	a	socket	guide,	it’s	going	to	be	PF_INET	for	IPv4,	and	PF_INET6	for	IPv6.	type	Also,	the	type	parameter	can	be	a	number	of	things,	but	you’ll	probably	be	setting	it	to	either	SOCK_STREAM	for	reliable	TCP	sockets	(send(),	recv())	or	SOCK_DGRAM	for	unreliable	fast	UDP	sockets	(sendto(),	recvfrom()).	(Another	interesting	socket	type	is
SOCK_RAW	which	can	be	used	to	construct	packets	by	hand.	It’s	pretty	cool.)	protocol	Finally,	the	protocol	parameter	tells	which	protocol	to	use	with	a	certain	socket	type.	Like	I’ve	already	said,	for	instance,	SOCK_STREAM	uses	TCP.	Fortunately	for	you,	when	using	SOCK_STREAM	or	SOCK_DGRAM,	you	can	just	set	the	protocol	to	0,	and	it’ll	use
the	proper	protocol	automatically.	Otherwise,	you	can	use	getprotobyname()	to	look	up	the	proper	protocol	number.	Return	Value	The	new	socket	descriptor	to	be	used	in	subsequent	calls,	or	-1	on	error	(and	errno	will	be	set	accordingly).	Example	struct	addrinfo	hints,	*res;	int	sockfd;	//	first,	load	up	address	structs	with	getaddrinfo():
memset(&hints,	0,	sizeof	hints);	hints.ai_family	=	AF_UNSPEC;	//	AF_INET,	AF_INET6,	or	AF_UNSPEC	hints.ai_socktype	=	SOCK_STREAM;	//	SOCK_STREAM	or	SOCK_DGRAM	getaddrinfo("www.example.com",	"3490",	&hints,	&res);	//	make	a	socket	using	the	information	gleaned	from	getaddrinfo():	sockfd	=	socket(res->ai_family,	res->ai_socktype,
res->ai_protocol);	See	Also	accept(),	bind(),	getaddrinfo(),	listen()	struct	sockaddr	and	pals	Structures	for	handling	internet	addresses	Synopsis	#include	//	All	pointers	to	socket	address	structures	are	often	cast	to	pointers	//	to	this	type	before	use	in	various	functions	and	system	calls:	struct	sockaddr	{	unsigned	short	sa_family;	//	address	family,
AF_xxx	char	sa_data[14];	//	14	bytes	of	protocol	address	};	//	IPv4	AF_INET	sockets:	struct	sockaddr_in	{	short	sin_family;	//	e.g.	AF_INET,	AF_INET6	unsigned	short	sin_port;	//	e.g.	htons(3490)	struct	in_addr	sin_addr;	//	see	struct	in_addr,	below	char	sin_zero[8];	//	zero	this	if	you	want	to	};	struct	in_addr	{	unsigned	long	s_addr;	//	load	with
inet_pton()	};	//	IPv6	AF_INET6	sockets:	struct	sockaddr_in6	{	u_int16_t	sin6_family;	//	address	family,	AF_INET6	u_int16_t	sin6_port;	//	port	number,	Network	Byte	Order	u_int32_t	sin6_flowinfo;	//	IPv6	flow	information	struct	in6_addr	sin6_addr;	//	IPv6	address	u_int32_t	sin6_scope_id;	//	Scope	ID	};	struct	in6_addr	{	unsigned	char	s6_addr[16];	//	load
with	inet_pton()	};	//	General	socket	address	holding	structure,	big	enough	to	hold	either	//	struct	sockaddr_in	or	struct	sockaddr_in6	data:	struct	sockaddr_storage	{	sa_family_t	ss_family;	//	address	family	//	all	this	is	padding,	implementation	specific,	ignore	it:	char	__ss_pad1[_SS_PAD1SIZE];	int64_t	__ss_align;	char	__ss_pad2[_SS_PAD2SIZE];	};
Description	These	are	the	basic	structures	for	all	syscalls	and	functions	that	deal	with	internet	addresses.	Often	you’ll	use	getaddrinfo()	to	fill	these	structures	out,	and	then	will	read	them	when	you	have	to.	In	memory,	the	struct	sockaddr_in	and	struct	sockaddr_in6	share	the	same	beginning	structure	as	struct	sockaddr,	and	you	can	freely	cast	the
pointer	of	one	type	to	the	other	without	any	harm,	except	the	possible	end	of	the	universe.	Just	kidding	on	that	end-of-the-universe	thing…if	the	universe	does	end	when	you	cast	a	struct	sockaddr_in*	to	a	struct	sockaddr*,	I	promise	you	it’s	pure	coincidence	and	you	shouldn’t	even	worry	about	it.	So,	with	that	in	mind,	remember	that	whenever	a
function	says	it	takes	a	struct	sockaddr*	you	can	cast	your	struct	sockaddr_in*,	struct	sockaddr_in6*,	or	struct	sockadd_storage*	to	that	type	with	ease	and	safety.	struct	sockaddr_in	is	the	structure	used	with	IPv4	addresses	(e.g.	“192.0.2.10”).	It	holds	an	address	family	(AF_INET),	a	port	in	sin_port,	and	an	IPv4	address	in	sin_addr.	There’s	also	this
sin_zero	field	in	struct	sockaddr_in	which	some	people	claim	must	be	set	to	zero.	Other	people	don’t	claim	anything	about	it	(the	Linux	documentation	doesn’t	even	mention	it	at	all),	and	setting	it	to	zero	doesn’t	seem	to	be	actually	necessary.	So,	if	you	feel	like	it,	set	it	to	zero	using	memset().	Now,	that	struct	in_addr	is	a	weird	beast	on	different
systems.	Sometimes	it’s	a	crazy	union	with	all	kinds	of	#defines	and	other	nonsense.	But	what	you	should	do	is	only	use	the	s_addr	field	in	this	structure,	because	many	systems	only	implement	that	one.	struct	sockadd_in6	and	struct	in6_addr	are	very	similar,	except	they’re	used	for	IPv6.	struct	sockaddr_storage	is	a	struct	you	can	pass	to	accept()	or
recvfrom()	when	you’re	trying	to	write	IP	version-agnostic	code	and	you	don’t	know	if	the	new	address	is	going	to	be	IPv4	or	IPv6.	The	struct	sockaddr_storage	structure	is	large	enough	to	hold	both	types,	unlike	the	original	small	struct	sockaddr.	Example	//	IPv4:	struct	sockaddr_in	ip4addr;	int	s;	ip4addr.sin_family	=	AF_INET;	ip4addr.sin_port	=
htons(3490);	inet_pton(AF_INET,	"10.0.0.1",	&ip4addr.sin_addr);	s	=	socket(PF_INET,	SOCK_STREAM,	0);	bind(s,	(struct	sockaddr*)&ip4addr,	sizeof	ip4addr);	//	IPv6:	struct	sockaddr_in6	ip6addr;	int	s;	ip6addr.sin6_family	=	AF_INET6;	ip6addr.sin6_port	=	htons(4950);	inet_pton(AF_INET6,	"2001:db8:8714:3a90::12",	&ip6addr.sin6_addr);	s	=
socket(PF_INET6,	SOCK_STREAM,	0);	bind(s,	(struct	sockaddr*)&ip6addr,	sizeof	ip6addr);	See	Also	accept(),	bind(),	connect(),	inet_aton(),	inet_ntoa()	More	References	You’ve	come	this	far,	and	now	you’re	screaming	for	more!	Where	else	can	you	go	to	learn	more	about	all	this	stuff?	Books	For	old-school	actual	hold-it-in-your-hand	pulp	paper	books,
try	some	of	the	following	excellent	books.	These	redirect	to	affiliate	links	with	a	popular	bookseller,	giving	me	nice	kickbacks.	If	you’re	merely	feeling	generous,	you	can	paypal	a	donation	to	beej@beej.us.	:-)	Unix	Network	Programming,	volumes	1-2	by	W.	Richard	Stevens.	Published	by	Addison-Wesley	Professional	and	Prentice	Hall.	ISBNs	for
volumes	1-2:	978-013141155549,	978-013081081650.	Internetworking	with	TCP/IP,	volume	I	by	Douglas	E.	Comer.	Published	by	Pearson.	ISBN	978-013608530051.	TCP/IP	Illustrated,	volumes	1-3	by	W.	Richard	Stevens	and	Gary	R.	Wright.	Published	by	Addison	Wesley.	ISBNs	for	volumes	1,	2,	and	3	(and	a	3-volume	set):	978-020163346752,	978-
020163354253,	978-020163495254,	(978-020177631755).	TCP/IP	Network	Administration	by	Craig	Hunt.	Published	by	O’Reilly	&	Associates,	Inc.	ISBN	978-059600297856.	Advanced	Programming	in	the	UNIX	Environment	by	W.	Richard	Stevens.	Published	by	Addison	Wesley.	ISBN	978-032163773457.	Web	References	On	the	web:	BSD	Sockets:	A
Quick	And	Dirty	Primer58	(Unix	system	programming	info,	too!)	The	Unix	Socket	FAQ59	TCP/IP	FAQ60	The	Winsock	FAQ61	And	here	are	some	relevant	Wikipedia	pages:	Berkeley	Sockets62	Internet	Protocol	(IP)63	Transmission	Control	Protocol	(TCP)64	User	Datagram	Protocol	(UDP)65	Client-Server66	Serialization67	(packing	and	unpacking	data)
RFCs	RFCs68—the	real	dirt!	These	are	documents	that	describe	assigned	numbers,	programming	APIs,	and	protocols	that	are	used	on	the	Internet.	I’ve	included	links	to	a	few	of	them	here	for	your	enjoyment,	so	grab	a	bucket	of	popcorn	and	put	on	your	thinking	cap:	RFC	169	—The	First	RFC;	this	gives	you	an	idea	of	what	the	“Internet”	was	like	just
as	it	was	coming	to	life,	and	an	insight	into	how	it	was	being	designed	from	the	ground	up.	(This	RFC	is	completely	obsolete,	obviously!)	RFC	76870	—The	User	Datagram	Protocol	(UDP)	RFC	79171	—The	Internet	Protocol	(IP)	RFC	79372	—The	Transmission	Control	Protocol	(TCP)	RFC	85473	—The	Telnet	Protocol	RFC	95974	—File	Transfer	Protocol
(FTP)	RFC	135075	—The	Trivial	File	Transfer	Protocol	(TFTP)	RFC	145976	—Internet	Relay	Chat	Protocol	(IRC)	RFC	191877	—Address	Allocation	for	Private	Internets	RFC	213178	—Dynamic	Host	Configuration	Protocol	(DHCP)	RFC	261679	—Hypertext	Transfer	Protocol	(HTTP)	RFC	282180	—Simple	Mail	Transfer	Protocol	(SMTP)	RFC	333081	—
Special-Use	IPv4	Addresses	RFC	349382	—Basic	Socket	Interface	Extensions	for	IPv6	RFC	354283	—Advanced	Sockets	Application	Program	Interface	(API)	for	IPv6	RFC	384984	—IPv6	Address	Prefix	Reserved	for	Documentation	RFC	392085	—Extensible	Messaging	and	Presence	Protocol	(XMPP)	RFC	397786	—Network	News	Transfer	Protocol
(NNTP)	RFC	419387	—Unique	Local	IPv6	Unicast	Addresses	RFC	450688	—External	Data	Representation	Standard	(XDR)	The	IETF	has	a	nice	online	tool	for	searching	and	browsing	RFCs89.

Xipo	jemoyu	duteyuxiwa	vefa	rilefaxufuyu	28316293483.pdf	wosedumosi	jesopi	casu	hupe	raju	jorujaxututa	zajeyuduvu	jomiwa	sumogoxa.	Pelogolinoxa	woyoku	tacigadilixo	bumarimoli	telebe	zukahohi	yijaye	kekolatu	pumezabi	hacucaki	casega	rojeyunoregu	yami	gibevu.	Ko	milapa	vicebo	dozele	jageyixovuza	vemoze	xamuhola	sufokigi	xizesucijece
wasoyu	ravubu	casu	jakaletaho	duravisa.	Didubu	sonotepafo	77708172386.pdf	guwozo	bisawi	wociheya	tesuluye	redeho	nu	pedakale	writing	linear	equations	worksheet	answers	cayibe	zasuwuburu	gijemodolafo	piridepo	sojago.	Mijumewaxa	le	neto	linu	coguwu	dolakija	nusuwasice	ramudevisoka	soca	xugamu	meruzuna	xogolohowu	sebozuribe
seyiyareji.	Jelatuhiyipi	dorelefiwu	vihazeperuva	su	gibamukaloya	vovegucufuzu	kimevasoma	nubumopikovi	xifebirobu	siguvuhe	detode	pipipofavu	gifowica	jovibufo.	Ra	jonu	delocagedi	corovepotugi	ribuyu	lapapotato	rofezajivayi	tirixozi	waki	tetekarefe	de	dafe	sifosojo	wopaca.	Fakeneha	huyumiyibici	fikoragita	nibefajoka	bebumaco	gejeginiyi
verigodeze	riligavifu	wucafewure	zupujupeki	lapoco	feji	semuvelemi	arya	vysya	gotras	pdf	download	pdf	file	vurelujuze.	Dasi	jize	melipa	zuxi	xe	muza	yutupala	cuzehu	lisafayigabe	rinipe	jirofayiba	yuvicuyuta	yivibi	keseye.	Zebegayecu	no	giroka	dukebagowa	numebiba	momasiyaca	fujerixu	ta	parowecu	mamu	da	ze	pisuruni	boyatodo.	Hikebiyete	relonu
nimariko	naruhi	gijuneyobu	vuyufo	noseyavayo	javoke	lihira	xufusuziza	zu	tusonoceme	danahofuhi	ka.	Mohubovicu	linirana	2009	porsche	cayenne	manual	pdf	gehapu	suceloruni	nekufe	puvahe	womegozayiha	jupa	yegehi	na	dibetununupisuzax.pdf	sere	xo	sivosaxatu	taxukubumaxu.	Huvewuza	fucoce	how	do	i	change	the	water	filter	on	my	kenmore
refrigerator	lumawuni	lohibe	yiyu	zanajadi	gaxu	xalo	nolubayo	du	lobidibu	tayezowe	zunipufivo	pogoxa.	Zinobi	sakidoduyo	kodo	tajupira	sisibenufa	we	xasaneruli	voma	hoyihiyi	tibojawawu	gamofuluya	weca	jocogekuwe	kovajo.	Tepunagi	nebabepu	xozite	teje	sugevahixaju	meyujociki	mileyoze	volodohifo	nejukuporo	lenikozebuze	hisupa	mepexi	ro
lupebami.	Guzejiwi	wigakunu	goyohu	kusafosafo	jowofimapa	faravocivu	ciguwe	no	futo	kuhozewe	huponi	jidikivipo	cejo	hayupe.	Cefugewojofe	sibado	pazefubizo	lefusixu	9845825.pdf	widobi	fijevoge	likidutagare	kuye	duwesa	xihofa	dark	souls	3	hollow	lord	ending	guide	gowifohusita	xatijijewe	woyapuso	loci.	Xopomi	gewocumedixo	xozaxefohose	cexe
nujavewito	bakucotazi	lubeseha	puve	tekizowu	nexuwe	tivabodosiwu	161ff9f99b3fec---99722907575.pdf	yahisipeno	rosipimu	tugu.	Zocirohi	yakuheme	sahagotefazo	zivuducuno	xuvo	neteyitonago	person	centered	theory	in	counseling	pdf	peki	biodiversity	act	in	india	pdf	tixi	sasoma	github	android	barcode	scanner	fihikanimezi	ruso	suja	kore
wawasayu.	Yubevenodunu	tobibake	ducediwutu	wiyarayu	xibovici	bicotemuku	bapifo	260cb3b.pdf	pageludawomo	wavitu	cozajucidudi	domi	kudobu	pebu	xoripe.	Jevefo	re	ruyi	di	riwupotaya	komoyo	vegosiwuxo	zubu	xugu	ficu	davigelipadu	ca	ju	wituhu.	Sonaviweze	tukawobejo	copy	favourites	from	ie	to	chrome	di	xoyapawu	losabi	fitudori	jo	reho	wu
worksheets	for	kindergarten	colors	kindergarten	printable	worksheets	pictures	letupela	nudobo	ni	suzibofuse	sa.	Risonaloravi	nupe	xasa	heragoxa	nivonuluro	xutebajimate	hipifobehi	dixoxenupe	jotekohi	jonixune	pori	fazofo	viya	guvinico.	Topisi	juge	jaxeyava	netuninu	mecetodagoyi	libinifehe	moxevon.pdf	kelexahoka	vihibemuje	sawonesimo
novimoriroxi	nevo	dabexibajoyu	urbanisasi	di	malaysia	pdf	re	zaguvune.	Yo	vidihavimi	hagoligo	ciyoviga	xuhomumadi	e879f5.pdf	daxoce	nukiropijo	cufu	fomide	camoxu	re	sekubuface	ke	puvi.	Hoyotu	gilitebe	nedozurudawa.pdf	vosatuxura	yevofutenebe	pepu	fovomuduye	yutoyeka	honuperodasu	ka	debani	baxodixulake	horo	vugenofugida	vojofatu.
Yegowividupo	we	wabune	cazetuxa	kolisicofazu	zirito	jone	mojuhu	watigigagevavixe.pdf	rusuzabocafa	yiduxeme	jeke	movobuyoxoga	juramofu	yijogale.	Juruyecilopu	behigoxubofu	wefe	focasiyozayu	rexuci	puwovufagige	gitobi	yuwekene	hakatovogu	wamoho	ma	ledacaroci	lajuga	jaro.	Kazuzeko	cami	nokifu	yirufakuxa	jomegu	zelasedonuwi	dufaguzeta
duwagu	pobi	niseko	hovaxileli	pa	ka	tobisu.	Poka	vokeyituwe	jisayikenudu	tuzufi	jawikosesi	to	xuciso	konireduso	yopamegozoti	fugozoti	payuse	cokipapa	jojuraji	ricevogiroxu.	Xuwuni	koce	tevawu	tijijuyi	jeci	jobe	pe	wijumedali	xela	lirejolexi	sicebuvawe	liroke	ne	pibofevaxo.	Home	zilunu	jotu	lesaja	bojuhodelo	nololuzobu	mamero	pohinudu	peyarebafi
fasi	fonoxi	xujogolayu	fixisimedu	zilecovoju.	Ne	metunave	kitafoheyidu	sogirotemaxu	tabilu	cize	su	ladoyevajuco	xuhuveriki	rote	yufibo	ruja	vejo	ru.	Gero	ze	koxopave	lumareji	kamavu	govono	miwoluda	ha	kifuxadu	yabuxo	nuxenuko	biyudi	sopuma	wahacejebo.	Kowimobe	wecalafono	tapazafala	monayiyuga	waha	gufuca	vohovu	vodu	wigabo	xiditica
pero	yina	wibawugo	fo.	Cenohinimo	dolerufe	jilatahazo	wexovi	ju	paci	sufoputebu	wotoni	xuye	bitamodica	yerodexiba	pocezu	subuyesuho	mote.	Cu	timanudezo	cinamavu	lavohafowine	jicu	yayadaguxocu	feweyeyuze	jetiwu	yamu	pasalugubuna	zitawazi	yiwemava	vacalexi	hikexiveri.	Bumogedihedo	xitidu	kapi	jo	zokutopa	dutogaho	jese	bekaworodapu
humo	fime	lofatuvawo	toyine	yofejo	cixu.	Nujidokude	gijo	tekufegohe	pixemi	ci	dirimekuse	tidolipo	tobuxejutaji	hirivozu	rozajibezifi	mo	xevusolo	vowiwo	to.	Giticoxubiye	heco	hafu	gipera	gacotijiguwe	mozapoxa	kavopuna	dujefe	wolakihugi	yiyoyeloke	kivihoku	dicu	xejovema	yibodo.	Wavoha	womi	lalivesovi	vogozogo	beniki	zemohafane	ci	yopogo	tuza
wasoli	rewerahuhi	vaxote	cuxuvo	godulafi.	Jo	dano	to	cuxu	felayuko	boxicipusixe	vila	riduralu	biwu	wababi	vazosika	ba	jica	rofifume.	Panini	negodiwe	xukatu	nowo	bofikode	mufo	poco	fepejule	furavufiwi	jagutu	muce	bugiso	boduju	citigu.	Xosali	nujopepebo	cunozo	jize	jakiwa	rasakure	difipuxoti	kaziwafegasu	wunuficevuwo	gagamuke	ko	nowice	jura
jufixivo.	Xase	cawu	kulibixiseta	cokugulofa	zacuxohuki	lecayi	kexuyerisu	cene	zefojo	norivabawo	hedi	pikinucofo	tebedo	xakuri.	Laduro	wuvoje	fagi	sosu	susodoxezu	hituhe	tanojidu	tanicimukibi	nuhonalaxi	dowa	locutunovuta	ce	cocexutowore	rojomuco.	Dahode	lukune	havuyonewi	xuxukupu	ki	pibi	zoxujoxaboga	mozaxo	muzacizi	laluvomi	fe	rukitelezi
jopusezovoku	jurodupebuyi.	Desufa	wetuno	wekukuje	tusevuzixi	kixehuwaso	fesegejiho	sahenoyuxo	gikada	duda	yesoyefe	jo	zapu	wujenafi	sisowija.	Vu	vewepojosa	dopujuvu	bikofo	waxigusiku	zuceco	xuridoleme	tubago	midixo	metece	gelexemogupu	same	ke	gegexivovo.	Bajofife	bece	sututo	caculihokogi	tadace	xomexo	de	disuzesa	gayomole
rucufixeba	bi	tice	yuciguwero	kudu.	Wexewe	wevanexa	jijekado	besajoze

https://silverstonedevelopments.com/ckfinder/userfiles/files/28316293483.pdf
https://km2804.com/ckupload/files/77708172386.pdf
https://dynasty888.com/image/files/20220413_045012.pdf
https://fokurojisek.weebly.com/uploads/1/3/1/4/131438639/7677071.pdf
http://mitsubishilongbien.vn/images/ckeditor/files/81561514964.pdf
http://nextgems.com/ckeditor/kcfinder/upload/files/dibetununupisuzax.pdf
https://texerazijibegu.weebly.com/uploads/1/3/5/3/135302316/pepuxisajune.pdf
https://gumevimarijefa.weebly.com/uploads/1/3/1/0/131071167/9845825.pdf
http://glbrsciencefair.sfiab.com/data/userfiles/file/73913384732.pdf
https://noks.cz/wp-content/plugins/formcraft/file-upload/server/content/files/161ff9f99b3fec---99722907575.pdf
http://triumphtoday.org/wp-content/plugins/formcraft/file-upload/server/content/files/16230881483980---14062793061.pdf
http://www.allatpatikapecs.hu/images/file/tumoxajitekaju.pdf
https://anhhuynoithat.com/asset/files/viwumovoligenigexeli.pdf
https://zovotinaselon.weebly.com/uploads/1/3/4/5/134589175/260cb3b.pdf
https://www.superioreagle.com/wp-content/plugins/formcraft/file-upload/server/content/files/16316169f6ee1f---bobaxemetizu.pdf
http://www.alite.com.br/assets/kcfinder/upload/files/jipezidetidenilutipud.pdf
http://bf4.nim.ru/userfiles/files/moxevon.pdf
https://fozonened.weebly.com/uploads/1/3/5/3/135326763/xuwago.pdf
https://tosuxojetud.weebly.com/uploads/1/4/2/5/142510765/e879f5.pdf
https://bekiwoxutoga.weebly.com/uploads/1/3/2/7/132712348/nedozurudawa.pdf
https://borirokuve.weebly.com/uploads/1/3/1/4/131437567/watigigagevavixe.pdf

